使用YOLOv8训练滑坡大规模多传感器滑坡检测数据集

滑坡大规模多传感器滑坡检测数据集,利用landsat,哨兵2,planet,无人机图像等多种传感器采集涵盖国内四川贵州,国外菲律宾印尼等地,数据共2w余副图像,mask准确标注滑坡位置。8GB数据量。在这里插入图片描述
数据集介绍

  1. 数据集概述
    数据集名称:大规模多传感器滑坡检测数据集
    数据来源:使用多种传感器采集,包括Landsat、Sentinel-2、Planet、无人机图像
    覆盖地区:国内四川、贵州,国外菲律宾、印尼等地
    图像数量:共2万余幅图像
    数据量:约8GB
    标签格式:Mask格式,准确标注滑坡位置
  2. 数据集结构
    假设你的数据集已经按照以下结构组织:

深色版本
landslide_dataset/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
└── masks/
├── train/
├── val/
└── test/
每个文件夹中包含对应的图像文件和掩码文件。确保所有图像文件都是.jpg格式,而掩码文件是.png格式,并且它们的名字与对应的图像文件相同。

数据集转换
由于YOLOv8需要标签文件为YOLO格式(即.txt文件),我们需要将Mask格式的标签文件转换为YOLO格式。

  1. 安装依赖
    确保你已经安装了必要的库:

bash
深色版本
pip install numpy opencv-python
2. 编写转换脚本
创建一个Python脚本来转换标签文件:

python
深色版本
import os
import cv2
import numpy as np

def mask_to_yolo(mask_path, image_size, class_id=0):
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

yolo_annotations = []
for contour in contours:
    x, y, w, h = cv2.boundingRect(contour)
    x_center = (x + w / 2) / image_size[1]
    y_center = (y + h / 2) / image_size[0]
    width = w / image_size[1]
    height = h / image_size[0]
    
    yolo_annotations.append(f"{class_id} {x_center} {y_center} {width} {height}")

return yolo_annotations

def convert_masks_to_yolo(image_dir, mask_dir, output_dir, class_id=0):
if not os.path.exists(output_dir):
os.makedirs(output_dir)

for image_file in os.listdir(image_dir):
    if image_file.endswith('.jpg'):
        image_path = os.path.join(image_dir, image_file)
        mask_path = os.path.join(mask_dir, image_file.replace('.jpg', '.png'))
        
        if not os.path.exists(mask_path):
            continue
        
        image = cv2.imread(image_path)
        image_size = (image.shape[0], image.shape[1])
        
        yolo_annotations = mask_to_yolo(mask_path, image_size, class_id)
        
        annotation_file = os.path.join(output_dir, image_file.replace('.jpg', '.txt'))
        with open(annotation_file, 'w') as f:
            f.write('\n'.join(yolo_annotations))

def main():
sets = [
(‘train’, ‘landslide_dataset/images/train’, ‘landslide_dataset/masks/train’, ‘landslide_dataset/labels/train’),
(‘val’, ‘landslide_dataset/images/val’, ‘landslide_dataset/masks/val’, ‘landslide_dataset/labels/val’),
(‘test’, ‘landslide_dataset/images/test’, ‘landslide_dataset/masks/test’, ‘landslide_dataset/labels/test’)
]

class_id = 0  # 假设只有一个类别,滑坡

for set_name, image_dir, mask_dir, output_dir in sets:
    convert_masks_to_yolo(image_dir, mask_dir, output_dir, class_id)

if name == ‘main’:
main()
数据集配置文件
创建一个数据集配置文件(如landslide_dataset.yaml),该文件定义了数据集的基本信息,包括路径、类别等。示例配置如下:

yaml
深色版本

训练和验证的数据集路径

train: landslide_dataset/images/train
val: landslide_dataset/images/val
test: landslide_dataset/images/test

类别名称

names:
0: landslide

类别数量

nc: 1
训练模型

  1. 安装依赖
    确保你的开发环境中安装了必要的软件和库。YOLOv8是基于PyTorch框架的,因此你需要安装Python以及PyTorch。

安装Python(推荐3.7或更高版本)
安装PyTorch:你可以从PyTorch官方网站获取安装命令,根据你的系统配置选择合适的安装方式。
克隆YOLOv8的官方仓库到本地,并安装项目所需的其他依赖:
bash
深色版本
git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip install -r requirements.txt
2. 训练模型
在完成上述准备工作后,你可以开始训练模型了。打开终端,进入YOLOv8项目的根目录,运行训练命令:

bash
深色版本
python ultralytics/yolo/v8/detect/train.py --data landslide_dataset.yaml --cfg yolov8.yaml --weights yolov8x.pt --batch-size 16 --epochs 100
这里:

–data 参数指定了数据集配置文件的路径。
–cfg 参数指定了模型配置文件。
–weights 参数用于指定预训练权重的路径,这有助于加速训练过程并提高最终模型的性能。
–batch-size 和 --epochs 分别设置了批量大小和训练轮数。
模型评估
训练完成后,可以通过验证集来评估模型的性能。YOLOv8提供了方便的命令来进行模型评估:

bash
深色版本
python ultralytics/yolo/v8/detect/val.py --data landslide_dataset.yaml --weights runs/train/exp/weights/best.pt
这里,best.pt 是训练过程中保存的最佳模型权重文件。

模型推理
你可以使用训练好的模型进行推理,检测新的图像中的滑坡。示例命令如下:

bash
深色版本
python ultralytics/yolo/v8/detect/predict.py --source path/to/your/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25
这里:

–source 参数指定了要检测的图像路径。
–conf 参数设置了置信度阈值,低于该阈值的检测结果将被忽略。
注意事项
数据增强:为了提高模型的泛化能力,可以考虑使用数据增强技术,如随机裁剪、翻转、颜色抖动等。
超参数调整:根据训练过程中观察到的损失值和验证集上的性能,适当调整学习率、批量大小等超参数。
硬件资源:如果显存不足,可以减少批量大小或使用更小的模型变体。
多尺度训练:可以尝试多尺度训练,以提高模型对不同尺度目标的检测能力。

### YOLOv8滑坡检测中的使用方法 YOLOv8 是一种高效的实时目标检测框架,适用于多种场景的目标检测任务。以下是关于如何利用 YOLOv8 进行滑坡检测的具体方法和示例。 #### 1. 安装依赖 为了使用 YOLOv8,需先安装 Ultralytics 库及其相关依赖项。可以通过以下命令完成安装: ```bash pip install ultralytics ``` 此步骤确保环境具备运行 YOLOv8 所需的所有必要组件[^2]。 #### 2. 数据集准备 对于滑坡检测任务,需要收集并整理标记好的数据集。通常采用 VOC 或 COCO 格式的标注文件。假设已有一个名为 `landslide_dataset` 的数据集,则其结构应如下所示: ``` landslide_dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 每张图像对应一个标签文件,存储为 `.txt` 文件,遵循 YOLO 格式[^4]。 #### 3. 配置 YOLOv8 创建一个 YAML 文件用于定义数据集路径和其他参数。例如,`data/landslide.yaml` 内容可能如下: ```yaml train: ../landslide_dataset/images/train val: ../landslide_dataset/images/val nc: 1 names: ['landslide'] ``` 上述配置指定了训练集、验证集的位置以及类别的名称和数量。 #### 4. 训练模型 通过 CLI 命令启动训练过程。下面是一个典型的训练指令: ```bash yolo task=detect mode=train model=yolov8n.pt data=data/landslide.yaml epochs=100 imgsz=640 ``` 该命令会加载预训练权重 (`yolov8n.pt`) 并针对自定义数据集调整网络参数。 #### 5. 模型评估 训练结束后,可调用内置工具对模型性能进行量化分析。执行以下命令即可获得详细的指标报告: ```bash yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=data/landslide.yaml ``` 这一步骤有助于确认模型是否达到预期效果[^3]。 #### 6. 可视化预测结果 借助 Python API 实现更灵活的结果展示功能。代码片段如下: ```python from ultralytics import YOLO model = YOLO('runs/detect/train/weights/best.pt') results = model.predict(source='test_images', save=True, save_txt=True) for r in results: boxes = r.boxes.xyxy.cpu().numpy() # 获取边界框坐标 confidences = r.boxes.conf.cpu().numpy() # 提取置信度分数 class_ids = r.boxes.cls.cpu().numpy() # 类别索引 ``` 这段脚本不仅保存了检测图片还记录下了具体数值信息以便进一步处理。 #### 7. 构建 GUI 应用程序 如果计划开发图形界面供实际部署使用,推荐选用 PyQt 或 Tkinter 等库辅助实现交互逻辑。这里仅给出简单框架示意: ```python import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget from ultralytics import YOLO class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("Slip Detection App") layout = QVBoxLayout() button = QPushButton("Run Slip Detection") button.clicked.connect(self.run_detection) layout.addWidget(button) container = QWidget() container.setLayout(layout) self.setCentralWidget(container) def run_detection(self): model = YOLO('runs/detect/train/weights/best.pt') result = model('input_image.jpg')[0] print(result.names) # 输出分类名列表 if __name__ == '__main__': app = QApplication(sys.argv) window = MainWindow() window.show() app.exec_() ``` 这个例子展示了基本的操作流程,可根据需求扩展更多特性。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值