为什么没有皮亚诺公理或其他自然数公理的基础,小学老师教你什么是自然数呢。
为什么没有抽代或者实分析的知识基础,他们确又教你加法是可以交换的。
高数连什么是划分和微元和的极限为什么总存在(上下黎曼积分的迫敛性)都不讲明确就说完了黎曼积分的定义,并让绝大多数的工科生随意使用。
数分的确界存在定理,单调有界数列收敛定理,闭区间套定理,博尔扎诺-魏尔斯特拉斯定理,柯西收敛原理之间可以互证,但它们的公理基础呢?
从数学史的角度说就是数学公理化,其是在十九世纪开始的,那么十九世纪以前的数学家们几乎全都是在不明确什么是自然数的情况下定义并发展了各个数学分科,欧拉也是在未证明级数是否可以进行交换的情况下“证明”了欧拉恒等式。
说到现在,我该说说你提问的问题了。
首先,这些初等的证明不算严谨的证明,确实缺少公理基础。但是学校教给学生的东西都是根据学生能力水平适当删减的,已经证明过其正确性的东西。一提自然数,就想起来幼儿园的苹果数量,一提有理数,绝大多数人脑子里就是俩整数比p/q,q不得0,有的初等数学也会要求q是正整数,这与公理体系下的定义无异,比如这道题的初等证明大多都是根据互素、奇偶来证明,但是互素、奇偶的来源就如同自然数的来源一样,直观感觉而已,缺乏其对根源的思考。
其次,对于大多数人来说不需要向根源方向去考虑,会使用就足够了。比如我需要一台电脑,那我需不需要了解主板的加工工艺,CPU的工作原理,甚至机箱材料的冶炼方法。这些往根源的思考是另外一些人的工作领域。这么说数学很多人可能不太懂,物理学的人类正是如此,人类所能观测的仅仅是不大不小的东西,而物理学家们正在努力向两侧不断延伸,相对论说明了经典力学的局限性,但是并不影响经典力学出现在学生课本里啊。
再次,如果以皮亚诺公理作为基础,应如何证明根号2不是有理数呢?皮亚诺公理到定义加法、乘法并证明其交换律、结合律、分配律和序的概念,定义整数、减法、负数、交换环、序,定义有理数、除法、域、序、自然数次幂的指数运算。基础的定义已经做完了,但是没有n次根,毕竟n次根是在实数中定义的。不过可以做个等价命题,即不存在有理数x使得x^2=2。为了方便证明,定义奇数偶数。先假设存在x使上式成立,则x=0,不妨设x为正,则存在正整数p、q使得x=p/q。由命题可知p^2=2q^2。由奇偶可知,p为偶数,设p=2k,也q^2=2k^2,且q<p。p':=q和q':=k,则由方程p^2=2q^2的解(p,q)过渡到新解(p',q')且新解的值更小,重复上述可得一组无穷递减的自然数解,这与无限减小原理矛盾,因此不存在。无限减小原理:不可能有无限减小的自然序列。当然这个也得证明,可以利用数学归纳法。
以上证明出自《陶哲轩实分析》,思路清晰,证明严谨,没有用到素数相关的知识,很多初等证明直接假设p、q互素,但是互素也需要证明,而且那是数论的范畴。
最后我想说的是,学习需要循序渐进和有所取舍,正如闻道有先后,术业有专攻,对于初等数学阶段的证明我们就按照直观感觉去思考,不必深究。否则最应该笑得是哲学家。
END
往期精彩回顾
影响计算机算法世界的十位大师(下)导师们,请为博士生找工作上点心!计算机是数学好的女性的完美学科