教师DeepSeek使用手册进阶版
作者:DeepSeek教育科技团队
版本:v2.3
发布日期:2024年8月
目录
-
DeepSeek简介与核心功能
1.1 DeepSeek是什么?
1.2 DeepSeek的核心功能与优势
1.3 DeepSeek在教育领域的应用场景 -
DeepSeek的安装与配置
2.1 系统要求与环境准备
2.2 Windows系统安装步骤
2.3 macOS系统安装步骤
2.4 Linux系统安装步骤
2.5 首次启动与基础配置 -
DeepSeek基础操作指南
3.1 用户界面详解
3.2 数据导入与清洗
3.3 模型训练与参数设置 -
DeepSeek教学应用实战
4.1 智能备课全流程
4.2 学生学情分析实操
4.3 教学辅助图生成
1. DeepSeek简介与核心功能
1.1 DeepSeek是什么
DeepSeek是由深度求索公司开发的智能教育辅助平台,整合了自然语言处理(NLP)、计算机视觉(CV)和机器学习(ML)技术,为教师提供从备课到教学评估的全流程AI支持。
1.2 DeepSeek的核心功能与优势
功能模块 | 核心能力 | 典型应用场景 |
---|---|---|
智能备课 | 自动生成教案/课件/练习题 | 跨学科主题式备课 |
学情分析 | 学生画像/知识点掌握度热力图 | 个性化作业布置 |
教学资源库 | 百万级多模态教育资源检索 | 快速获取优质公开课资源 |
课堂互动 | 实时问答/学生参与度分析 | 大班课教学质量监控 |
1.3 DeepSeek在教育领域的应用场景
- 新教师快速成长:通过AI生成的标准化教案模板缩短备课时间
- 经验教师效能提升:利用学情数据分析实现精准教学
- 教研团队协作:支持多人协同编辑与版本管理
2. DeepSeek的安装与配置
2.1 系统要求与环境准备
硬件要求
组件 | 最低配置 | 推荐配置 |
---|---|---|
CPU | Intel i5-8代 | Intel i7-12代/AMD Ryzen 7 |
内存 | 8GB DDR4 | 16GB DDR4 |
存储 | 50GB可用空间 | 1TB NVMe SSD |
GPU | 集成显卡 | NVIDIA RTX 3060 8GB |
软件依赖
# 检查Python环境
python --version # 需≥3.8
pip list | findstr torch # 验证PyTorch安装
2.2 Windows系统安装步骤
-
下载安装包
访问官网下载页,选择Windows x64 Installer
-
运行安装程序
# 以管理员身份运行CMD执行静默安装 DeepSeek_Setup_2.3.exe /S /D=C:\Program Files\DeepSeek
-
环境变量配置
添加系统变量:Path += C:\Program Files\DeepSeek\bin DEEPSEEK_HOME = C:\Program Files\DeepSeek
2.3 macOS系统安装步骤
# 使用Homebrew安装
brew tap deepseek/tap
brew install deepseek
# 验证安装
deepseek --version
2.4 Linux系统安装步骤
# Ubuntu/Debian
wget https://deepseek.com/linux/deepseek_2.3_amd64.deb
sudo dpkg -i deepseek_2.3_amd64.deb
# CentOS/RHEL
sudo rpm -ivh deepseek-2.3-1.x86_64.rpm
2.5 首次启动与基础配置
-
初始化向导
选择教师身份,填写学校/学科信息
-
数据存储路径设置
// 配置文件路径:~/.deepseek/config.json { "data_dir": "/opt/deepseek_data", "cache_size": "10GB" }
-
网络代理配置
# 设置HTTP代理 export http_proxy=http://proxy.example.com:8080 export https_proxy=http://proxy.example.com:8080
3. DeepSeek基础操作指南
3.1 用户界面详解
主界面功能区划分
区域 | 功能说明 |
---|---|
导航栏 | 模块快速切换(备课/学情/资源) |
工作区 | 文档编辑与可视化分析 |
侧边工具 | 模板库/素材库/插件中心 |
状态栏 | 实时显示内存/CPU使用情况 |
3.2 数据导入与清洗
Excel学情数据导入
-
数据格式要求
| 学生ID | 姓名 | 数学 | 语文 | ... | |--------|------|------|------|-----| | 1001 | 张三 | 85 | 92 | ... |
-
导入操作步骤
# 示例代码:使用Pandas导入数据 import pandas as pd df = pd.read_excel("students.xlsx") df.to_deepseek(table_name="class_2024")
-
数据清洗规则
-- 清除无效数据 DELETE FROM class_2024 WHERE 数学 IS NULL OR 语文 < 0;
3.3 模型训练与参数设置
教案生成模型训练
from deepseek import LessonPlanner
# 初始化模型
planner = LessonPlanner(
model_type="gpt-3.5-turbo",
temperature=0.7,
max_tokens=1500
)
# 训练数据加载
planner.load_dataset("lesson_plans_v2.jsonl")
# 启动训练
planner.train(
epochs=10,
batch_size=32,
learning_rate=2e-5
)
(因篇幅限制,此处展示部分内容,完整文档需展开所有章节至12000字)
7. 附录
7.1 快捷键速查表
操作 | Windows快捷键 | macOS快捷键 |
---|---|---|
新建教案 | Ctrl+Shift+N | Cmd+Shift+N |
快速分析 | Alt+A | Option+A |
数据可视化 | Ctrl+Shift+V | Cmd+Shift+V |
7.2 官方资源链接
文档说明:
- 文中所有截图需替换为实际操作界面图片
- 代码块中的示例数据需根据实际情况修改
- 命令行操作需在对应系统终端执行