金融数据分析实战:Pandas在信用评分模型中的应用

金融数据分析实战:Pandas在信用评分模型中的应用


🌟 文章目录 🌟

  1. 金融数据的特殊挑战
  2. 核心技巧详解
    2.1 客户信息标准化
    2.2 交易数据异常检测
    2.3 特征工程构建信用评分指标
    2.4 敏感数据脱敏与合规处理
  3. 实训案例:信用卡违约风险预测
    3.1 数据加载与初步探索
    3.2 客户信息清洗
    3.3 交易行为特征提取
    3.4 模型训练数据准备
  4. 常见问题与解决方案
  5. 附录:数据合规与模型评估

1. 金融数据的特殊挑战

"金融数据的三大痛点:

  • 隐私保护要求高: 需符合GDPR、国内《个人信息保护法》
  • 数据质量参差不齐: 客户年龄、收入可能存在异常值
  • 特征工程复杂: 需从交易流水构建风险指标

本文聚焦场景:
某银行信用卡中心提供的匿名化数据,包含:

  • 客户基本信息(年龄、收入、职业)
  • 交易流水记录(时间、金额、类型)
  • 历史违约标签(是否逾期超过90天)

2. 核心技巧详解


2.1 客户信息标准化

🔥 技巧一:敏感字段脱敏
# 隐藏客户姓名  
def anonymize_name(name):  
    return name[0] + '*' * (len(name)-2) + name[-1]  

# 应用到姓名列  
df['客户姓名脱敏'] = df['客户姓名'].apply(anonymize_name)  

# 收入字段分箱处理  
df['收入等级'] = pd.cut(  
    df['月收入'],  
    bins=[0, 5000, 10000, 15000, np.inf],  
    labels=['低', '中低', '中高', '高']  
)  

🔥 技巧二:年龄异常值处理
# 标记异常年龄(如年龄<18或>80)  
df['年龄异常'] = (  
    (df['年龄'] < 18) | (df['年龄'] > 80)  
).astype(int)  

# 填充缺失年龄  
df['年龄'].fillna(  
    df.groupby('职业')['年龄'].transform('median'),  
    inplace=True  
)  

2.2 交易数据异常检测

🔥 技巧三:大额交易标记
# 标记单笔交易超过10万的记录  
df['大额交易'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值