金融数据分析实战:Pandas在信用评分模型中的应用
🌟 文章目录 🌟
- 金融数据的特殊挑战
- 核心技巧详解
2.1 客户信息标准化
2.2 交易数据异常检测
2.3 特征工程构建信用评分指标
2.4 敏感数据脱敏与合规处理 - 实训案例:信用卡违约风险预测
3.1 数据加载与初步探索
3.2 客户信息清洗
3.3 交易行为特征提取
3.4 模型训练数据准备 - 常见问题与解决方案
- 附录:数据合规与模型评估
1. 金融数据的特殊挑战
"金融数据的三大痛点:
- 隐私保护要求高: 需符合GDPR、国内《个人信息保护法》
- 数据质量参差不齐: 客户年龄、收入可能存在异常值
- 特征工程复杂: 需从交易流水构建风险指标
本文聚焦场景:
某银行信用卡中心提供的匿名化数据,包含:
- 客户基本信息(年龄、收入、职业)
- 交易流水记录(时间、金额、类型)
- 历史违约标签(是否逾期超过90天)
2. 核心技巧详解
2.1 客户信息标准化
🔥 技巧一:敏感字段脱敏
# 隐藏客户姓名
def anonymize_name(name):
return name[0] + '*' * (len(name)-2) + name[-1]
# 应用到姓名列
df['客户姓名脱敏'] = df['客户姓名'].apply(anonymize_name)
# 收入字段分箱处理
df['收入等级'] = pd.cut(
df['月收入'],
bins=[0, 5000, 10000, 15000, np.inf],
labels=['低', '中低', '中高', '高']
)
🔥 技巧二:年龄异常值处理
# 标记异常年龄(如年龄<18或>80)
df['年龄异常'] = (
(df['年龄'] < 18) | (df['年龄'] > 80)
).astype(int)
# 填充缺失年龄
df['年龄'].fillna(
df.groupby('职业')['年龄'].transform('median'),
inplace=True
)
2.2 交易数据异常检测
🔥 技巧三:大额交易标记
# 标记单笔交易超过10万的记录
df['大额交易'