大模型技术基础与Transformer架构详解:从理论到实践

人工智能大模型应用与实践专题

专题目录规划

  1. 大模型技术基础与Transformer架构详解 ✅(本文)
  2. Prompt Engineering实战:从入门到精通
  3. LangChain框架与大模型应用开发全指南
  4. 大模型微调实战:LoRA与QLoRA技术详解
  5. 多模态大模型应用开发:文本、图像与视频处理
  6. 大模型在企业级应用中的落地实践
  7. 大模型在医疗健康领域的创新应用
  8. 金融领域大模型应用与风险控制
  9. 大模型在智能客服与对话系统中的应用
  10. 大模型安全与伦理:挑战与解决方案

第一章:大模型技术基础与Transformer架构详解

🔥 重磅提示:本文包含完整Transformer实现代码,带你从零理解大模型核心技术!文末有惊喜资源包🎁

1. 大模型技术发展概述

1.1 人工智能发展简史

人工智能的发展经历了多个关键阶段:

时期 代表性技术 特点
1950-1980 图灵测试、专家系统 规则驱动,符号主义
1980-2000 神经网络雏形 连接主义兴起
2000-2010 统计机器学习 特征工程主导
2010-2017 深度学习 CNN/RNN广泛应用
2017-至今 Transformer与大模型 自注意力机制革命

2020年后,以GPT-3为代表的大模型技术开启了AI发展的新纪元,参数规模从百亿级迅速扩展到万亿级。

💡 行业洞察:据中国信通院数据,2024年全球AI大模型数量已达1328个,中国占比36%。

1.2 大模型的核心特点

大模型之所以能取得突破性进展,主要基于三大特性:

  1. 海量参数规模:从GPT-3的1750亿参数到如今万亿级参数
  2. 强大的泛化能力:通过预训练学习通用知识表征
  3. 多任务统一架构:同一模型处理多种任务

🚀 技术前沿:微软亚洲研究院提出的LONGNET将Transformer序列长度扩展至10亿+,突破了传统长度限制。

2. Transformer架构深度解析

2.1 自注意力机制

自注意力(Self-Attention)是Transformer的核心,其数学表达为:

A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V) = softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

其中:

  • Q(Query):查询向量
  • K(Key):键向量
  • V(Value):值向量
  • d_k:键向量的维度
import torch
import torch.nn as nn
import math

class SelfAttention(nn.Module):
    def __init__(self, embed_size
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值