【多模态大模型实战】文本、图像与视频处理:从CLIP到Video-LLaMA的完整指南

【多模态大模型实战】文本、图像与视频处理:从CLIP到Video-LLaMA的完整指南

🚀 技术前沿:GPT-4 Vision发布引爆多模态革命!本文带你实现跨模态理解与生成,附《多模态数据集大全》📚

1. 多模态技术基础

1.1 核心架构对比

模型 发布机构 模态支持 核心创新 参数量
CLIP OpenAI 文本+图像 对比学习 400M-4B
Flamingo DeepMind 文本+图像+视频 门控交叉注意力 80B
BLIP-2 Salesforce 文本+图像 Q-Former连接器 2.7B
GPT-4V OpenAI 全模态 统一Transformer 1.8T
Video-LLaMA 腾讯 文本+视频 时空自适应 13B

1.2 模态对齐原理

跨模态表征学习的核心目标:

min ⁡ θ L a l i g n = E ( v , t ) ∼ D [ d ( f θ ( v ) , g θ ( t ) ) ] \min_\theta \mathcal{L}_{align} = \mathbb{E}_{(v,t)\sim D} [d(f_\theta(v), g_\theta(t))] θminLalign=E(v,t)D[d(fθ(v),gθ(t))]

其中:

  • v v v:视觉输入
  • t t t:文本输入
  • f θ f_\theta fθ:视觉编码器
  • g θ g_\theta gθ:文本编码器
  • d d d:相似度度量(如余弦相似度)
import torch
import torch.nn as nn

class ContrastiveLoss(nn.Module):
    def __init__(self, temperature=0.07):
        super().__init__()
        self.temp = temperature
        self.cos = nn.CosineSimilarity(dim=2)
        
    def forward(self, image_emb, text_emb):
        # 计算相似度矩阵
        sim = self.cos
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值