【多模态大模型实战】文本、图像与视频处理:从CLIP到Video-LLaMA的完整指南
🚀 技术前沿:GPT-4 Vision发布引爆多模态革命!本文带你实现跨模态理解与生成,附《多模态数据集大全》📚
1. 多模态技术基础
1.1 核心架构对比
模型 | 发布机构 | 模态支持 | 核心创新 | 参数量 |
---|---|---|---|---|
CLIP | OpenAI | 文本+图像 | 对比学习 | 400M-4B |
Flamingo | DeepMind | 文本+图像+视频 | 门控交叉注意力 | 80B |
BLIP-2 | Salesforce | 文本+图像 | Q-Former连接器 | 2.7B |
GPT-4V | OpenAI | 全模态 | 统一Transformer | 1.8T |
Video-LLaMA | 腾讯 | 文本+视频 | 时空自适应 | 13B |
1.2 模态对齐原理
跨模态表征学习的核心目标:
min θ L a l i g n = E ( v , t ) ∼ D [ d ( f θ ( v ) , g θ ( t ) ) ] \min_\theta \mathcal{L}_{align} = \mathbb{E}_{(v,t)\sim D} [d(f_\theta(v), g_\theta(t))] θminLalign=E(v,t)∼D[d(fθ(v),gθ(t))]
其中:
- v v v:视觉输入
- t t t:文本输入
- f θ f_\theta fθ:视觉编码器
- g θ g_\theta gθ:文本编码器
- d d d:相似度度量(如余弦相似度)
import torch
import torch.nn as nn
class ContrastiveLoss(nn.Module):
def __init__(self, temperature=0.07):
super().__init__()
self.temp = temperature
self.cos = nn.CosineSimilarity(dim=2)
def forward(self, image_emb, text_emb):
# 计算相似度矩阵
sim = self.cos