机器学习算法实战系列:生成模型全解析——从VAE到扩散模型的技术演进

机器学习算法实战系列:生成模型全解析——从VAE到扩散模型的技术演进

引言

"AI不仅能识别世界,还能创造世界!生成模型正在重塑艺术创作、药物发现和内容生成,你想知道DALL·E和Stable Diffusion背后的核心技术吗?"

生成模型是近年来机器学习领域最具突破性的技术之一,它使AI系统具备了创造逼真图像、音乐、文本等内容的能力。本文将系统讲解生成模型的技术演进路线,从变分自编码器(VAE)到生成对抗网络(GAN),再到最新的扩散模型,通过代码实现和实战案例,带你深入理解AI创造力的技术本质。

第一部分:生成模型基础

1.1 生成模型基本概念

生成模型vs判别模型
  • 判别模型:学习P(y|x),直接建模决策边界
  • 生成模型:学习P(x)或P(x|y),建模数据分布
核心任务
  1. 生成:从潜在空间采样生成新样本
  2. 密度估计:计算数据点的似然
  3. 无监督表示学习:学习有意义的潜在表示

1.2 评估指标

  • IS (Inception Score):生成图像质量和多样性
  • FID (Frechet Inception Distance):特征空间距离
  • 精确率与召回率:生成分布与真实分布匹配程度

第二部分:变分自编码器(VAE)

2.1 VAE核心思想

变分推断

近似难以计算的后验分布P(z|x):

q_φ(z|x) ≈ P(z|x)
证据下界(ELBO)
log P(x) ≥ 𝔼[log P_θ(x|z)] - KL(q_φ(z|x)||P(z))

2.2 PyTorch实现

import torch
import torch.nn as nn
import torch.nn.functional as F

class VAE(nn.Module):
    def __init__(self, input_dim=784, hidden_dim=400, latent_dim=20):
        super().__init__()
        
        # 编码器
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc21 = nn.Linear(hidden_dim, latent_dim)  # 均值
        self.fc22 = nn.Linear(hidden_dim, latent_dim)  # 对数方差
        
        # 解码器
        self.fc3 = nn.Linear(latent_dim, hidden_dim)
        self.fc4 = nn.Linear(hidden_dim, input_dim)
        
    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)
        
    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5*logvar)
        eps = torch.randn_like(std)
        return mu + eps*std
        
    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        return torch.sigmoid(self.fc4(h3))
        
    def forward(self, x):
        mu, logvar = self.encode(x.view(-1, 784))
        z = self.reparameterize(mu, logvar)
        return self.decode(z), mu, logvar

# 损失函数
def loss_function(recon_x, x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值