【大模型技术前沿】MoE架构与混合专家系统:下一代AI基础设施详解
🌟 技术快报:Google最新发布的Switch Transformer已实现万亿参数实时推理!附《MoE实战代码库》💻
1. MoE核心原理
1.1 基本架构对比
架构类型 | 参数利用率 | 计算成本 | 典型代表 |
---|---|---|---|
稠密模型 | 100% | O(N²) | GPT-3 |
稀疏MoE | 20-30% | O(N logN) | Switch Transformer |
动态MoE | 10-15% | O(N) | GLaM |
1.2 专家选择机制
import torch
import torch.nn as nn
import torch.nn.functional as F
class ExpertSelector(nn.Module):
def __init__(self, num_experts, hidden_size):
super().__init__()
self.gate = nn.Linear(hidden_size, num_experts)
def forward(self, x):
logits = self.gate(x)
probs = F.softmax(logits, dim=-1)
# Top-k稀疏化
topk_val, topk_idx = torch.topk(probs, k=2)
# 重新归一化
topk_val = topk_val / topk_val.sum(dim=-1, keepdim=True)
return topk_idx, topk_val
2. 关键技术实现
2.1 动态负载均衡
class LoadBalancer:
def __init__(self, num_experts):
self.expert_counts = torch.zeros(num_experts)
self.alpha = 0.01 # 平滑系数
def update(self, expert_usage):
# 指数移动平均
self.expert_counts = (1 - self.alpha) * self.expert_counts + self.alpha * expert_usage
def get_loss(self, gate_logits):
# 计算负载均衡损失
prob_per_expert = torch.mean(F.softmax(gate_logits, dim=0), dim=0)
return torch.std(prob_per_expert) * 0.1 # 调节系数
2.2 专家并行训练
from torch.distributed import ProcessGroup
class ExpertParallel:
def __init__(self, experts, pg: ProcessGroup):
self.experts = nn.ModuleList(experts)
self.pg = pg
self.world_size = pg.size()
def forward(self, x, expert_idx):
# 按专家分配计算
outputs = []
for i in range(self.world_size):
mask = (expert_idx == i)
if mask.any