机器学习算法实战系列:机器学习数学基础全解析——从线性代数到概率统计

机器学习算法实战系列:机器学习数学基础全解析——从线性代数到概率统计

引言

“数学是机器学习的灵魂!想真正理解算法背后的原理而不仅是调包?掌握这些数学工具将让你从调参侠蜕变为算法设计师!”

机器学习建立在坚实的数学基础之上,理解这些数学概念对于掌握算法本质至关重要。本文将系统讲解机器学习所需的数学知识体系,通过直观解释、几何图示和Python实现,带你深入理解线性代数、概率统计、优化理论等核心数学工具在实际机器学习中的应用。

第一部分:线性代数精要

1.1 向量与矩阵运算

基本概念
  • 向量:机器学习的特征表示
    import numpy as np
    v = np.array([1, 2, 3])  # 特征向量
    
  • 矩阵:批量数据处理
    X = np.array([[1, 2], [3, 4]])  # 设计矩阵
    
重要运算
  • 点积:相似度计算
    np.dot(v1, v2)  # 或 v1 @ v2
    
  • 矩阵乘法:神经网络前向传播
    W = np.random.randn(3, 2)  # 权重矩阵
    output = X @ W  # (n,2) @ (2,3) → (n,3)
    

1.2 矩阵分解

特征分解
A = QΛQ⁻¹

应用:PCA降维

eigvals, eigvecs = np.linalg.eig(cov_matrix)
SVD分解
A = UΣVᵀ

应用:推荐系统

U, s, Vh = np.linalg.svd(ratings_matrix)

第二部分:概率与统计基础

2.1 概率分布

常见分布
分布 公式 应用场景
伯努利 P(X=k)=pᵏ(1-p)¹⁻ᵏ 二分类问题
高斯 (2πσ²)^(-1/2)exp(-(x-μ)²/(2σ²)) 误差假设
多项 P(x₁,…,xₖ)=n!/(x₁!..xₖ!)p₁ˣ¹…pₖˣᵏ 多分类问题
Python实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值