Python人工智能应用模型专题:智能城市交通管理系统
场景八:智能城市交通管理系统
🌟 场景介绍
随着城市化进程加速,交通拥堵成为全球性难题。本系统将结合计算机视觉、深度学习和强化学习技术,开发一个能够实时分析交通流量、预测拥堵趋势并优化信号灯配时的智能交通管理平台。系统通过路侧摄像头和车载设备采集数据,利用AI技术为城市交通管理部门提供决策支持,实现交通流畅度和安全性的双重提升。
🚀 技术亮点
- 多源交通数据融合(视频+雷达+GPS)
- 基于深度学习的实时车流分析
- 强化学习信号灯优化算法
- 交通事故自动检测与预警
- 可视化交通指挥大屏
📂 文件结构
smart_traffic/
│── core/ # 核心模块
│ │── traffic_analysis.py # 交通流分析
│ │── signal_optimizer.py # 信号灯优化
│ │── incident_detection.py # 事故检测
│ └── prediction_engine.py # 流量预测
│── data/ # 数据处理
│ │── video_processor.py # 视频处理
│ └── sensor_integration.py # 传感器集成
│── models/ # 模型定义
│ │── yolov5_traffic.py # 交通目标检测
│ └── lstm_prediction.py # LSTM预测模型
│── visualization/ # 可视化
│ │── traffic_dashboard.py # 交通大屏
│ └── alert_system.py # 预警系统
│── config/ # 配置文件
│ │── intersections.yaml # 路口配置
│ └── city_roads.json # 路网数据
└── requirements.txt # 依赖库
📝 核心代码实现
1. 交通流分析模块 (core/traffic_analysis.py)
import cv2
import numpy as np
from collections import defaultdict
from typing import Dict, List
class TrafficAnalyzer:
"""实时交通流分析引擎"""
def __init__(self, model_path: str):
# 加载YOLOv5交通检测模型
self.model = self._load_yolov5(model_path)
self.track_history = defaultdict(list)
self.class_names = ['car', 'bus', 'truck', 'motorcycle', 'person']
def _load_yolov5(self, model_path):
"""加载YOLOv5模型"""
import torch
model = torch.hub.load('ultralytics/yolov5', 'custom', path=model_path)
return model
def analyze_frame(self, frame: np.ndarray, intersection_id: str) -> Dict:
"""分析单帧交通视频"""
# 执行目标检测
results = self.model(frame)
# 解析检测结果
detections = results.pandas().xyxy[0]
vehicles = detections[detections['name'].isin(self.class_names)]
# 统计各车道车流量
lane_counts = self._count_by_lanes(frame, vehicles)
# 计算平均车速(简化版)
avg_speed = self._estimate_speed(vehicles, intersection_id)
return {
'intersection': intersection_id,
'timestamp': time.time(),
'total_vehicles': len(vehicles),
'lane_counts': lane_counts,
'avg_speed': avg_speed,
'vehicle_types': vehicles['name'].value_counts().to_dict()
}
def _count_by_lanes(self, frame, detections):
"""按车道统计车辆数"""
height, width = frame.shape[:2]
lane_markers = [
width//4, width//2, 3*width//4
] # 简化的车道划分
lane_counts = {
i:0 for i in range(len(lane_markers)+1)}
for _, vehicle in detections.iterrows():
x_center = (vehicle['xmin'] + vehicle['xmax']) / 2
lane = np.digitize(x_center, lane_markers)
lane_counts[lane] += 1
return lane_counts
def _estimate_speed(self, vehicles, intersection_id):
"""估计车辆平均速度(像素/秒)"""
# 实际应用中应使用更精确的测速方法
return np.random.uniform(10, 30) # 模拟数据
2. 信号灯优化模块 (core/signal_optimizer.py)
import numpy as np
from gym import spaces
from stable_baselines3 import PPO
from typing import Dict, List
class TrafficSignalOptimizer:
"""基于强化学习的交通信号灯优化"""
def __init__(self, intersection_id: str):
self.intersection_id = intersection_id
self.action_space = spaces.Discrete(4) # 4种信号灯组合
self.observation_space = spaces.Box(
low=0, high=100, shape=(8,), dtype=np.float32)
self.model = PPO('MlpPolicy', self, verbose=1)
def optimize_phase(self, traffic_data: Dict) -> Dict:
"""生成最优信号灯配时方案"""
# 准备观测状态
obs = self._prepare_observation(traffic_data)
# 模型预测最佳动作
action, _ = self.model.predict(obs)
# 转换为信号灯指令
phase = self._act