areg实际上并不是像使用Python那样用3677个村庄指标来反转矩阵。它正在以某种方式转换数据,从而避免了这样做的必要性,因此速度会更快。这也是为什么带有乡村假人的regress中的常量与areg中的常量不匹配,尽管斜率系数应该相同,如果您等待Python完成。在
下面是areg用regress计算系数的方法。由于我没有对5个吸收效应进行自由度调整,因此标准误差将太大,但我将通过乘以SEs在下面的循环中手动进行调整:. sysuse auto, clear
(1978 Automobile Data)
. drop if missing(rep78)
(5 observations deleted)
. /* (1) transform the data by subtracting the group specific mean and */
. /* adding the grand/overall mean back in for outcome and regressors */
. foreach var of varlist price weight length foreign {
2. bys rep78: egen group_mean = mean(`var')
3. qui sum `var'
4. gen double `var'_star = `var' - group_mean + r(mean)
5. drop group_mean
6. }
. /* (2) Fit the model on transformed data */
. regress price_star weight_star length_star foreign_star
Source | SS df MS Number of obs = 69
-+ F(3, 65) = 26.99
Model | 315296838 3 105098946 Prob > F = 0.0000
Residual | 253139578 65 3894455.05 R-squared = 0.5547
-+ Adj R-squared = 0.5341
Total | 568436416 68 8359359.06 Root MSE = 1973.4
price_star | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-+
weight_star | 6.15521 1.008605 6.10 0.000 4.140885 8.169534
length_star | -100.9268 33.82508 -2.98 0.004 -168.4801 -33.37341
foreign_star | 3394.052 782.454 4.34 0.000 1831.383 4956.72
_cons | 5453.782 3829.487 1.42 0.159 -2194.232 13101.8
. /* (3) Adjust the SEs for DoF */
. foreach coef in weight_star length_star foreign_star _cons {
2. di "Adjusted SE for `coef': " %9.8gc _se[`coef']*sqrt(65/61)
3. }
Adjusted SE for weight_star: 1.041149
Adjusted SE for length_star: 34.91649
Adjusted SE for foreign_star: 807.7009
Adjusted SE for _cons: 3953.05
. /* (4) Make sure areg gives the same output */
. areg price weight length foreign, absorb(rep78)
Linear regression, absorbing indicators Number of obs = 69
F( 3, 61) = 25.33
Prob > F = 0.0000
R-squared = 0.5611
Adj R-squared = 0.5108
Root MSE = 2037.1129
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-+
weight | 6.15521 1.041149 5.91 0.000 4.073303 8.237116
length | -100.9268 34.91649 -2.89 0.005 -170.7466 -31.10692
foreign | 3394.052 807.7009 4.20 0.000 1778.954 5009.149
_cons | 5453.782 3953.05 1.38 0.173 -2450.831 13358.39
-+
rep78 | F(4, 61) = 0.261 0.902 (5 categories)
Stata代码:
^{pr2}$