
研究一个群,自然的想法是先从最简单的一个元素"a" 开始,与"a" 有关的自然是a和自己以及它的逆的一些运算构成的幂
一、群元素的阶
研究一个群,自然的想法是先从最简单的一个元素"a" 开始",与"a" 有关的自然是下面的元素:
第一个自然的想法是:a的幂和最特殊的元素---单位元e有没有关系?
定义1(群元素的阶) 设a是群G中的一个元素,使得的最小正整数n称为a的阶,记作|a|. 若这样的n不存在,则称a是无限阶的,记为|a|=+∞。 注: (1)单位元|e|=1; (2)
; (3)
.![]()
第2条
例1:整数加群中0的阶为1,1的阶为+∞。
例2:4次单位根群 G={1,-1,i,-i}中
观察
定义2:若群G中每个元素的阶都有限,则称G为周期群;若G中除e外,其余元素的阶无限,则称G为无扭群;既不是周期群也不是无扭群的群称为混合群。
定理1:有限群中每个元素的阶都有限 。
证明:处理有限群的方法我们用过很多遍了,就是形式地写出很多个元素,其中必有相等的元。例如此定理:中必有相等的,设
,则
![]()
注:无限群中元素的阶可能有限也可能无限,甚至可能都有限。
例3 :设
接着例2,给了一个元素a的阶数之后,我们自然的想知道a的幂次的阶和a的阶是否有关系。
定理2:设群G中元素a的阶是n,则![]()
证明:对m用一下带余除法:m=nq+r,考虑阶数n的最小性即可。
定理3:设群G中元素a的阶是n,则![]()
证明一个元素x的阶数为r,只需证明(1)
定理3的证明:为了方便书写,设![]()
(1)![]()
(2) 设还有,由定理2,
而
故
,从而
,
是
的阶。
推论1:设|a|=st, 则, 其中s,t 是正整数。 推论2:设|a|=n, 则![]()
![]()
接下来自然考虑两个元素乘积的阶数,遗憾的是,通常情况下两个元素a,b的乘积ab的阶数与a的阶和b的阶没有什么关系,只有附加上乘法交换,并且两个元素的阶互素的时候才有如下结论。
定理4:若群中元素|a|=m,|b|=n, 则当ab=ba,且 (m,n)=1时, |ab|=mn.
定理4的证明:(1)![]()
(2)设还有(那么为了建立s和m,n的关系,我们给这个式子做m次方,建立s和m,n的桥梁) 故
由
及定理2知,
同理
.故 |ab|=mn.
反例4:在一般线性群中,
定理5: 设G 为交换群,且G中所有元素有最大阶m,则G中每个元素的阶都是m的因数。
定理5的证明:设G中元素a有最大阶m,任取另一个元素b,设其阶为n。若.则必然存在素数p,使得
。
(这是两个整数,n不整除m的等价条件,也是处理不整除的通常做法,想想为什么?)
由|a|=m,|b|=n,得因此我们只需要构造一个G中阶大于
的元即可,所以令
,由定理4,
矛盾。
共轭元是非交换代数、非结合代数中非常重要的概念。实际上共轭元的阶数相等。证起来很容易。
定理6:元素b与其共轭元阶相同。![]()
关于元素的阶数可以做几个练习:
练习1:证明定理6以及:(1)ab与ba阶相同;(2)abc,bca,cab阶相同;(3)设a是群G中唯一的一个2阶元,证明:对任意G中元素x,均有ax=xa。
练习2:有限群中阶大于2的元素一定是偶数个;从而偶数阶群中一定有2阶元素。
二、循环群
接下来我们考虑由a的所有幂次构成的集合,根据我们开头写的幂的运算规则,很容易验证这些元素构成一个群。这是一个比较简单的群,其结构我们已经完全清楚了。
首先,给出生成的概念。假设M是群G里面的一个非空真子集,那么G中包含M的子群总是存在的,因为G本身就是一个包含M的子群。用<M>表示群G中包含M的一切子群的交集,之前的内容已经证明了任意个子群的交还是子群,所以<M>就是G中包含M的一个子群。并且<M>是包含M的最小子群。这和闭包的概念是类似的,一个集合的闭包是包含它的所有闭集的交集,也就是包含它的一个最小的闭集。<M>称为由群中元素M生成的子群,M叫做生成系。
定义3:若G=<a>,则称G为由a生成的一个循环群,并称a为G的一个生成元。
显然,由幂的运算规则,循环群一定是交换群。
运算用乘法表示时:
运算用加法表示时:
- 若循环群G=<a>是无限群,那么
互不相同,否则的话,若
,则
,从而
,群G中最多有i-j个互不相同的元素,与G是无限群矛盾。
- 若循环群G=<a>是n阶有限群,则|a|必须是n,从而由
知:
. (
例5:整数加群是一个无限循环群,生成元为1或-1.
例6:n次单位根群
有了上面两个例子,我们自然的想,对于下面的有限群,是不是同构的?
定理7(循环群的结构定理)设G=<a>。则:(1)若G是无限循环群,则(2) 若G是n阶有限循环群,则![]()
,(实际上我们更常用:
)
所以:无限循环群彼此同构(同构于整数加群);有限同阶的循环群彼此同构(同构于n 次单位根群或模n剩余类群);不同阶的循环群不同构。
定理7的证明:只需构造从群G到我们要证的群,例如整数加群的一个映射。证明这个映射是双射,并且是群同态,从而是群同构。
(1)令. 显然是双射,且是同态,从而是同构:
![]()
(2)令,显然是双射,且是同态,从而是同构:
![]()
由例5和例6,以及上面的循环群的结构定理,马上可以知道下面的结论:
定理8:(1)无限循环群有两个生成元; (2)n阶循环群有φ( n)个生成元。
证:(1)无限循环群<a>有两个生成元,即 与。
(2)是n阶循环群<a>的生成元,当且仅当
![]()
注:φ(n)为欧拉函数:在0和n之间,与n互素的整数的个数。欧拉函数在现在的RSA密码体制中有重要地位。
欧拉函数实际上很容易得到:例如最简单情况:

循环群的结构我们已经清楚了,那下一步自然是要考虑其子结构。
定理9:循环群的子群仍是循环群.
定理9的证明:设H是循环群<a>的子群。若H={e}, 则H显然是循环群;若则H中必含有
我们取一个最特殊的元素:取
为H中最小的正整数幂。往证
显然有
![]()
另一方面,对任意的,由带余除法,
得
由m最小知r=0。从而
![]()
定理10:无限循环群有无限多个子群; 当< >为n阶循环群时,对n的每个正因数k, < >有且只有一个k阶子群.![]()
定理10的证明:(1)无限循环群有无穷个互不相同的子群(低次幂不能被高次幂生成的子群包含)。(2)若
,则
,
是一个k阶子群。唯一性显然,若还有一个k阶子群
,则
,故
; ,均有k个元素,所以两者相等。
推论:n阶循环群有且仅有T(n)个子群。![]()
练习3:证明:n阶有限循环群同构于模n剩余类群:
参考文献:杨子胥. 近世代数,第3版.高等教育出版社, 2011.