matlab多个未知数方程组,超定方程组求解多个未知数

该博客介绍了如何使用Matlab进行超定方程组的求解,具体涉及牛顿拉普森迭代法。通过定义函数`dfun`,博主展示了如何计算方程组的导数矩阵,该矩阵对于解决多个未知数的问题至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

function [dF ] = dfun( X )

% 牛顿拉普森迭代

syms A B F1 F2 F3 F4 F5 F6

A=X(1);

B=X(2);

F1=X(3);

F2=X(4);

F3=X(5);

F4=X(6);

F5=X(7);

F6=X(8);

F=fun(X);

dF=[-4.39E-07/(1-B^2)+1.40E-06*B/(1-B^2),(-4.39E-07*2*A*B+1.40E-06*A*(1+B^2))/(1-B^2)^2,-1,0,0,0,0,0

-5.72E-06/(1-B^2)+2.44E-06*B/(1-B^2),(-5.72E-06*2*A*B+2.44E-06*A*(1+B^2))/(1-B^2)^2,0,0,0,0,0,0

1.44E-06/(1-B^2)-2.40E-06*B/(1-B^2),(1.44E-06*2*A*B-2.40E-06*A*(1+B^2))/(1-B^2)^2,0,-1,0,0,0,0

1.82E-07/(1-B^2)-1.07E-06*B/(1-B^2),(1.82E-07*2*A*B-1.07E-06*A*(1+B^2))/(1-B^2)^2,0,0,0,0,0,0

-7.91E-07/(1-B^2)+9.21E-06*B/(1-B^2),(-7.91E-07*2*A*B+9.21E-06*A*(1+B^2))/(1-B^2)^2,0,0,0,0,0,0

2.81E-06/(1-B^2)-1.56E-06*B/(1-B^2),(2.81E-06*2*A*B-1.56E-06*A*(1+B^2))/(1-B^2)^2,0,0,0,0,0,0

1.38E-06/(1-B^2)-9.80E-06*B/(1-B^2),(1.38E-06*2*A*B-9.80E-06*A*(1+B^2))/(1-B^2)^2,0,0,0,0,0,0

-4.62E-06/(1-B^2)+1.05E-06*B/(1-B^2),(-4.62E-06*2*A*B+1.05E-06*A*(1+B^2))/(1-B^2)^2,0,0,0,0,0,0

-1.21E-06/(1-B^2)+3.41E-06*B/(1-B^2),(-1.21E-06*2*A*B+3.41E-06*A*(1+B^2))/(1-B^2)^2,0,0,-1,0,0,0

8.39E-08/(1-B^2)+1.94E-06*B/(1-B^2),(8.39E-08*2*A*B+1.94E-06*A*(1+B^2))/(1-B^2)^2,0,0,0,-1,0,0

-3.85E-07/(1-B^2)-1.82E-06*B/(1-B^2),(-3.85E-07*2*A*B-1.82E-06*A*(1+B^2))/(1-B^2)^2,0,0,0,0,-1,0

7.26E-06/(1-B^2)-2.80E-06*B/(1-B^2),(7.26E-06*2*A*B-2.80E-06*A*(1+B^2))/(1-B^2)^2,0,0,0,0,0,-1];

dF=dF';

end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值