Matlab/Simulink中PMSM模型的反电动势系数和转矩系数
在PMSM仿真中常常会用到永磁磁链 ψ \psi ψ,但是电机的参数手册中却不会直接给出永磁磁链 ψ \psi ψ,给出的是反电动势系数Ke和转矩系数Kt,那么这三者有什么样的关系呢?
一、Simulink中的PMSM模型
首先我们来看Simulink中的PMSM是如何定义这 ψ \psi ψ、Ke和Kt的关系的,
单位 | 描述 | |
---|---|---|
K1 | V.s(Wb) | 转子的磁链大小 |
K2 | Vpeak_LL / krmp | 反电动势系数 ,每1000 r/min在定子侧产生的线电压峰值(基波) |
K3 | N.m / A_peak | 转矩系数,单位定子电流峰值产生的力矩 |
三者的关系如下: |
K 1 = ψ f K 2 = 3 ⋅ p 0 ⋅ K 1 ⋅ 1000 9.55 K 3 = 1.5 ⋅ p 0 ⋅ K 1 \begin{array}{l} K1=\psi _f\\ K2=\sqrt{3}\cdot p_0\cdot K1\cdot \frac{1000}{9.55}\\ K3=1.5\cdot p_0\cdot K1\\ \end{array} K1=ψfK2=3⋅p0⋅K1⋅9.551000K3=1.5⋅p0⋅K1
K 2 K 3 = 3 ⋅ p 0 ⋅ K 1 ⋅ n / 9.55 1.5 ⋅ p 0 ⋅ K 1 = 3 ⋅ 1000 / 9.55 1.5 = 120.911 \frac{K2}{K3}=\frac{\sqrt{3}\cdot p_0\cdot K1\cdot n/9.55}{1.5\cdot p_0\cdot K1}=\frac{\sqrt{3}\cdot 1000/9.55}{1.5}=120.911 K3K2=1.5⋅p0⋅K13⋅p0⋅K1⋅n/9.55=1.53⋅1000/9.55=120.911
二、仿真验证
当前使用的电机参数如下,
永磁磁链为0.1827
反电动势常数为132.5525
转矩常数为1.0962
那么我们来仿真验证一下K2和K3的物理意义
(1) 验证反电动势系数K2
即每1000r/min产生的线反电动势峰值,实验条件为1000r/min空载 ,闭环开环均可。
观察示波器Uabc可得,
稳定后线电压有效值为,
V
r
m
s
_
L
L
=
V
r
m
s
_
p
h
⋅
3
=
55.74
⋅
3
=
96.5445
V_{rms\_LL}=V_{rms\_ph}\cdot \sqrt{3}=55.74\cdot \sqrt{3}=96.5445
Vrms_LL=Vrms_ph⋅3=55.74⋅3=96.5445
线电压峰值为,
V
p
e
a
k
_
L
L
=
V
p
e
a
k
_
p
h
⋅
3
=
77.5
⋅
3
=
134.234
=
K
2
V_{peak\_LL}=V_{peak\_ph}\cdot \sqrt{3}=77.5\cdot \sqrt{3}=134.234\,\,{\color{red} =\,\,K2}
Vpeak_LL=Vpeak_ph⋅3=77.5⋅3=134.234=K2
与上图参数表中的K2=132.5525近似相等有
细心的朋友可能发现我的相电压如此正弦,这是因为我没有用真实的逆变器来产生相电压,而是直接PARK反变换驱动电机的,这也就意味着几乎没有什么谐波,全是基波
那么如果用三相逆变器结果又会如何呢?我们试试换成逆变器后,重新验证.
注:此处的逆变器我是用IGBT自己搭的,这是为了验证下桥臂开关管的AD采样电流用的,与最左侧库中的模型是等效的!
打开示波器Uab,
测得稳态时的线电压Uab总的有效值RMS为,
V
R
M
S
_
L
L
=
155.5
V_{RMS\_LL}=155.5
VRMS_LL=155.5
明显和无逆变器的值不一样,
V
r
m
s
_
L
L
=
=
96.5445
V_{rms\_LL}==96.5445
Vrms_LL==96.5445,这是为什么呢?
这里是因为未加入SVPWM逆变器前,全是基波信号。加入是SVPWM逆变器后,相电压是PWM斩波,有很多的谐波成分,所以直观上,直接测量得到的线电压有效值比基波大很多。
那么谐波含量究竟大多少呢?这需要我们对线电压进行谐波分析,
可得基波线电压有效值,
V
1
R
M
S
_
L
L
=
94.75
V_{1RMS\_LL}=94.75
V1RMS_LL=94.75
同样也可以根据THD公式,可得基波线电压有效值为,
V
1
R
M
S
_
L
L
=
V
R
M
S
_
L
L
1
+
T
H
D
2
=
155.5
1
+
1.3
1
2
=
94.3534
V_{1RMS\_LL}=\frac{V_{RMS\_LL}}{\sqrt{1+THD^2}}=\frac{155.5}{\sqrt{1+1.31^2}}=94.3534
V1RMS_LL=1+THD2VRMS_LL=1+1.312155.5=94.3534
则线电压峰值为,
V
p
e
a
k
_
L
L
=
V
1
R
M
S
_
L
L
⋅
2
=
94.3534
⋅
2
=
133.436
=
K
2
V_{peak\_LL}=V_{1RMS\_LL}\cdot \sqrt{2}=94.3534\cdot \sqrt{2}=133.436\,\,{\color{red} =\,\,K2}
Vpeak_LL=V1RMS_LL⋅2=94.3534⋅2=133.436=K2
这也就是为什么表格中要标红强调基波!
(2) 验证转矩系数K3
我们已知K3=1.0962,实验条件为,加载 ,因为采用id=0,且CLARK变换为等幅变换,于是线电流的峰值即为iq.
以下是iq的跟踪曲线和Vq,
从图中可知,
i
p
e
a
k
=
i
q
=
9.931
A
i_{peak}=i_q=9.931A
ipeak=iq=9.931A
观察转出转矩示波器,
得输出电磁转矩为,
T
e
=
10.84
N
.
m
T_e=10.84N.m
Te=10.84N.m
而,
T
e
=
K
3
⋅
i
p
e
a
k
=
1.0962
×
9.931
=
10.8864
N
.
m
T_e=K3\cdot i_{peak}=1.0962\times 9.931=10.8864N.m
Te=K3⋅ipeak=1.0962×9.931=10.8864N.m
I(A) | 倍数 | Te(N.m) | |
---|---|---|---|
I_peak | 9.931 | K3=1.096 | 10.88 |
I_rms | 7.022 | Kt=1.549 | 10.88 |
三、PMSM手册是如何给定永磁磁链的?
比如ABB的HDS60-0102A型号的PMSM电机参数如图,
比如国产米格电机,
从这两种型号的电机可知K2/K3(每千转反电动势和力矩系数的比值)是常值,但与Matlab不一样,相差一倍,这是为什么?
只是定义的方式不一样,在实际中,有效值更好测量。反电动势系数的定义常常是每千转线电压有效值 ,转矩系数的定义是每安培有效值产生的力矩
在Matlab中,
K
2
K
3
=
V
p
e
a
k
_
L
L
/
(
k
r
p
m
)
N
.
m
/
(
A
_
p
e
a
k
)
=
121
\frac{K2}{K3}=\frac{Vpeak\_LL/(krpm)}{N.m/(A\_peak)}=121
K3K2=N.m/(A_peak)Vpeak_LL/(krpm)=121
而在实际的手册中,
K
e
K
t
=
V
r
m
s
_
L
L
/
(
k
r
p
m
)
N
.
m
/
(
A
_
r
m
s
)
=
K
2
/
2
K
3
⋅
2
=
1
2
K
2
K
3
=
60.5
\frac{Ke}{Kt}=\frac{Vrms\_LL/(krpm)}{N.m/(A\_rms)}=\frac{K2/\sqrt{2}}{K3\cdot \sqrt{2}}=\frac{1}{2}\frac{K2}{K3}=60.5
KtKe=N.m/(A_rms)Vrms_LL/(krpm)=K3⋅2K2/2=21K3K2=60.5
从中我也可以知道ABB公司的永磁磁链几乎和理论一样,很有水准!
总结如下:
Matlab上,
K2 | Vpeak_LL/(krpm) | 线电压峰值 |
---|---|---|
K3 | N.m/(A_peak) | 线电流峰值 |
手册上,
Ke | Vrms_LL/(krpm) | 线电压有效值 |
---|---|---|
Kt | N.m/(A_rms) | 线电流有效值 |
----------------------------------------我是更新线----------------------------------------------
米格电机的磁链为,
ψ
f
=
K
2
3
⋅
p
0
⋅
1000
/
9.55
=
2
⋅
K
e
3
⋅
p
0
⋅
1000
/
9.55
=
2
⋅
8.2
3
⋅
4
⋅
1000
/
9.55
=
0.015985
\psi _f=\frac{K2}{\sqrt{3}\cdot p_0\cdot 1000/9.55}=\frac{\sqrt{2}\cdot Ke}{\sqrt{3}\cdot p_0\cdot 1000/9.55}=\frac{\sqrt{2}\cdot 8.2}{\sqrt{3}\cdot 4\cdot 1000/9.55}=0.015985
ψf=3⋅p0⋅1000/9.55K2=3⋅p0⋅1000/9.552⋅Ke=3⋅4⋅1000/9.552⋅8.2=0.015985
或,
ψ
f
=
K
3
1.5
⋅
p
0
=
K
t
/
2
1.5
⋅
p
0
=
0.128
/
2
1.5
⋅
4
=
0.0150849
\psi _f=\frac{K3}{1.5\cdot p_0}=\frac{Kt/\sqrt{2}}{1.5\cdot p_0}=\frac{0.128/\sqrt{2}}{1.5\cdot 4}=0.0150849
ψf=1.5⋅p0K3=1.5⋅p0Kt/2=1.5⋅40.128/2=0.0150849
ABB电机的的磁链为,
ψ
f
=
K
2
3
⋅
p
0
⋅
1000
/
9.55
=
2
⋅
K
e
3
⋅
p
0
⋅
1000
/
9.55
=
2
⋅
33.5
3
⋅
5
⋅
1000
/
9.55
=
0.0522435
\psi _f=\frac{K2}{\sqrt{3}\cdot p_0\cdot 1000/9.55}=\frac{\sqrt{2}\cdot Ke}{\sqrt{3}\cdot p_0\cdot 1000/9.55}=\frac{\sqrt{2}\cdot 33.5}{\sqrt{3}\cdot 5\cdot 1000/9.55}=0.0522435
ψf=3⋅p0⋅1000/9.55K2=3⋅p0⋅1000/9.552⋅Ke=3⋅5⋅1000/9.552⋅33.5=0.0522435
或,
ψ
f
=
K
3
1.5
⋅
p
0
=
K
t
/
2
1.5
⋅
p
0
=
0.554
/
2
1.5
⋅
5
=
0.0522316
\psi _f=\frac{K3}{1.5\cdot p_0}=\frac{Kt/\sqrt{2}}{1.5\cdot p_0}=\frac{0.554/\sqrt{2}}{1.5\cdot 5}=0.0522316
ψf=1.5⋅p0K3=1.5⋅p0Kt/2=1.5⋅50.554/2=0.0522316