改进欧拉法c语言实验报告,Euler法和改进的Euler法实验报告.docx

Euler法和改进的Euler法实验报告

用Euler法和改进的Euler法求u’=-5u(0≤t≤1),u(0)=1的数值解,步长h=0.1,0.05,并比较两个算法的精度。解:当步长h=0.1时编写程序如下所示clfclearclc%直接求解微分方程y=dsolve('Dy=-5*y','y(0)=1','t')%Euler法h=0.1;t=0:h:1;n=length(t);u=zeros(1,n);u(1)=1;zbu(1,1)=t(1);zbu(2,1)=u(1);fori=2:n f=-5*u(i-1);u(i)=u(i-1)+h*f;zbu(1,i)=t(i);zbu(2,i)=u(i);endzbu%改进的Euler法v=zeros(1,n);v0=zeros(1,n);v(1)=1;zbv(1,1)=t(1);zbv(2,1)=v(1);fori=2:n f=-5*v(i-1);v0(i)=v(i-1)+h*f;v(i)=v(i-1)+h/2*(f-5*v0(i));zbv(1,i)=t(i);zbv(2,i)=v(i);endzbvplot(t,u,'r*','markersize',10)holdon,plot(t,v,'r.','markersize',20)holdon,ezplot(y,[0,1])holdon,title('Euler法和改进的Euler法比较(h=0.1)),gridonlegend('Euler法','?改进的Euler法','解析解')%解真值h=0.1;t=0:h:1;n=length(t);fori=1:n y(i)=1/exp(5*t(i));%通过第一部分程序直接解得的解析解zby(1,i)=t(i);zby(2,i)=y(i);endzby我们可以得到计算后的结果图像如图一所示图1 Euler法和改进的Euler法比较(h=0.1)同时,我们得到Euler法,改进的Euler法和解析解的在各点处数值分别如下所示:t坐标0.00.10.20.30.40.50.60.70.80.91.0欧拉1.00000.50000.25000.12500.06250.03130.01560.00780.00390.00200.0010改进欧拉1.0000 0.6250 0.3906 0.2441 0.1526 0.0954 0.0596 0.0373 0.0233 0.0146 0.0091真值1.00000.60650.36790.22310.13530.08210.04980.03020.01830.01110.0067表1 Euler法和改进的Euler法在各点数值比较(h=0.1)为了比较Euler法和改进的Euler法的算法精度,在这里我们利用相对误差的概念进行评判。对于Euler法和改进的Euler法的每个的估计值有:从而我们可以通过计算得到如下的相对误差表:t坐标0.00.10.20.30.40.50.60.70.80.91.0欧拉0 0.1756 0.3204 0.4398 0.5382 0.6193 0.6862 0.7413 0.7867 0.8242 0.8551改进欧拉0 0.0305 0.0618 0.0942 0.1275 0.1618 0.1972 0.2336 0.2712 0.3099 0.3498表2 Euler法和改进的Euler法在各点相对误差比较(h=0.1)为了评定算法精度,我们对每种算法的在所有点处的相对误差求平均,可以得到Euler法的平均相对误差为0.5443,改进的Euler法的平均相对误差为0.1670。由此我们可以得出改进的欧拉法的算法进度更高。当步长h=0.05时程序编写如下clfclearclc%直接求解微分方程y=dsolve('Dy=-5*y','y(0)=1','t')%Euler法h=0.01;t=0:h:1;n=length(t);u=zeros(1,n);u(1)=1;zbu(1,1)=t(1);zbu(2,1)=u(1);fori=2:n f=-5*u(i-1);u(i)=u(i-1)+h*f;zbu(1,i)=t(i);zbu(2,i)=u(i);endzbu%改进的Euler法v=zeros(1,n);v0=zeros(1,n);v(1)=1;zbv(1,1)=t(1);zbv(2,1)=v(1);fori=2:n f=-5*v(i-1);v0(i)=v(i-1)+h*f;v(i)=v(i-1)+h/2*(f-5*v0(i));zbv(1,i

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
向前欧拉法(Forward Euler Method)和改进欧拉法(Improved Euler Method)都是常用的一阶常微分方程数值,而龙格-库塔(Runge-Kutta Method)则是更为通用的高阶数值。 向前欧拉法是一种简单的数值,它是通过利用微分方程的定义式来进行逼近,即通过 $\frac{dy}{dt}=f(t,y)$ 来计算 $y_{i+1}$,公式为: $$y_{i+1}=y_i+h*f(t_i,y_i)$$ 其中 $h$ 为步长,$t_i$ 为时间点,$y_i$ 为时间点对应的函数值。这种方的优点是计算简单,缺点是精度不高,而且步长需要取得比较小才能得到较为准确的结果。 改进欧拉法是对向前欧拉法改进,它是在向前欧拉法的基础上对 $y_{i+1}$ 进行了一步的修正,公式为: $$y_{i+1}=y_i+\frac{h}{2}*[f(t_i,y_i)+f(t_{i+1},y_i+h*f(t_i,y_i))]$$ 这种方的优点是比向前欧拉法精度更高,缺点是计算量略大于向前欧拉法。 龙格-库塔是一类常用的高阶数值,它通过对微分方程进行多次迭代来逼近实际函数值。其中最常用的是四阶龙格-库塔,公式为: $$y_{i+1}=y_i+\frac{1}{6}*(k_1+2k_2+2k_3+k_4)$$ 其中, $$k_1=h*f(t_i,y_i)$$ $$k_2=h*f(t_i+\frac{h}{2},y_i+\frac{k_1}{2})$$ $$k_3=h*f(t_i+\frac{h}{2},y_i+\frac{k_2}{2})$$ $$k_4=h*f(t_i+h,y_i+k_3)$$ 这种方的优点是精度高,缺点是计算较为复杂。 通过简单的实验可以比较这三种方的精度和计算效率,从而得到更深刻的认识。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值