基于Mathematica 10.3 快速处理信号作业的探索

本文是作者的学习笔记,主要介绍如何使用Mathematica 10.3的FourierTransform、InverseFourierTransform和LaplaceTransform函数快速处理信号作业中的积分问题,包括傅里叶变换、逆变换和拉普拉斯变换的示例。同时,也提及了Integrate函数在计算定积分和不定积分时的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开始

本博文纯属个人学习笔记,本意是整理一下在写信号作业时偷懒、免除一些手算积分的受苦环节的笔记,因此特异性较强。且本人水平有限,仅能提供有限的参考。
实际运用中,很多情况都可以直接利用系统自带的FourierTransform函数及其兄弟进行计算,非常方便,省去很多麻烦(只是本人计算能力更差了,考试恐怕药丸)。
值得一提的是:类似于build的热键为:shift+enter

利用FourierTransform函数快速计算Fourier展开

- FourierTransform

FourierTransform[expr,t,ω] 可以给出 expr 的符号傅里叶变换

此处的expr可以是任意连续函数,并不局限于以Exp[] (Mathematica中指数函数的表现方式)引导。
例如:

In: FourierTransform[1, t, ω]
Out: Sqrt[2\[Pi]] DiracDelta[ω]]

FourierTransform
或是:

In: FourierTransform[Exp[-a*t], t, ω]
Out: Sqrt[2\[Pi]] DiracDelta[I a +[ω]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值