教学理论上的目标:
1.理解等差数列的概念; 2.掌握等差数列的通项公式与前n项和公式; 3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题; 4.了解等差数列与一次函数、二次函数的关系. 尧哥的教学目标: 熟练掌握万能法 知识点一 等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示. 数学语言表达式:an+1-an=d(n∈N*,d为常数),或an-an-1=d(n≥2,d为常数) 知识点二 等差数列的通项公式与前n项和公式 知识点三 等差数列及前n项和的性质 知识点四 等差数列的前n项和公式与函数的关系 知识点五 等差数列的前n项和的最值 在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值. 【尧哥带你写结论】 等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.若m+n=2p(m,n,p∈N*),则am+an=2ap. (3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d. (4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列. (5)若{an}是等差数列,公差为d, 则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列. (6)等差数列{an}的前n项和为Sn, 则Sn,S2n-Sn,S3n-S2n仍成等差数列,其公差为n2d.进入
【高考真题】
......
【尧哥讲方法】 等差数列基本运算的常见类型及解题策略 (1)求差公d或序号n. 在求解时,一般要运用方程思想. (2)求通项. a1和d是等差数列的两个基本元素.(3)求特定项.
利用等差数列的通项公式或等差数列的性质求解.
(4)求前n项和. 利用等差数列的前n项和公式直接求解或利用等差中项间接求解.【尧哥重点提醒】
在求解数列基本量问题中主要使用的是方程思想,要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.
聪明的你
一定学会了
......
接下来进入
【尧哥趣味数学】
直与弯
咦?一根直杆为什么能从弯曲的洞中穿过?
想想这其实不奇怪。这根杆是斜着的,杆中间的点离旋转轴最近,因此对应的洞上的点离旋转轴也最近;杆的两边离旋转轴较远,因此对应的洞上的点离旋转轴也远。所以,这个洞不会是直线,只会是一条曲线。
那这是什么曲线?感兴趣的读者可以自己动手算一算。
答案是双曲线。
把这个曲线绕旋转轴旋转一周,形成一个曲面,叫做单叶双曲面。
看看下图你就会发现,这根杆所在直线是这个曲面的一部分:
对于一个曲面,如果经过曲面上的每一点都有一根直线在曲面上,我们就称之为直纹曲面。
圆柱面、圆锥面都是直纹曲面的例子,单叶双曲面也是如此,只不过它上面的直线看起来不是那么显而易见。
单叶双曲面还有一个神奇的地方:通过它上面的每一个点,都有两条直线在曲面上。
这样的特点使得单叶双曲面在建筑当中也有特殊的应用,比如说俗称“小蛮腰“的广州新电视塔。
关注尧哥数学
让你跑的更快一点
点在看