AI绘画关于SD,MJ,GPT,SDXL百科全书
面试题分享点我直达
2023Python面试题
2023最新面试合集链接
2023大厂面试题PDF
面试题PDF版本
java、python面试题
项目实战:AI文本 OCR识别最佳实践
AI Gamma一键生成PPT工具直达链接
玩转cloud Studio 在线编码神器
玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间
史上最全文档AI绘画stablediffusion资料分享
AI绘画 stable diffusion Midjourney 官方GPT文档 AIGC百科全书资料收集
AIGC资料包
最近在项目中遇到一个性能瓶颈,就是一个接口需要调用多个下游接口获取数据并合并后返回。由于下游接口数量较多,下载的数据量也不小,导致接口响应时间过长,严重影响了系统的性能。经过分析,这个接口天然适合用并发编程进行优化。今天就来聊聊我是如何用Java中的并发工具类来优化这个接口的。
首先,这个接口的调用流程其实很简单:
- 接收请求
- 同时调用5个下游接口,获取返回的数据
- 合并下游接口返回的数据
- 返回合并后的数据很明显,这里的性能瓶颈在于同时调用下游接口。为了提高并发程度,我们可以使用Java并发包中的ExecutorService来实现线程池,然后提交多个任务到线程池中执行。
java
// 创建一个固定大小的线程池
ExecutorService executor = Executors.newFixedThreadPool(5);
// 提交任务到线程池执行
for (int i = 0; i < 5; i++) {
executor.submit(() -> {
// 调用下游接口
});
}
// 关闭线程池
executor.shutdown();
这样我们就可以最大程度地发挥多线程的优势,5个下游接口调用任务可以同时进行,效率会提高很多。但是,这样还不够。接口的请求量可能变化很大,固定大小的线程池可能会导致资源浪费或者无法处理请求。所以我们可以使用缓存线程池:
java
ExecutorService executor = Executors.newCachedThreadPool();
缓存线程池会根据请求量动态调整线程数,可以提高资源利用率。另外,我们还需要处理线程池中任务的返回结果。可以通过Future来实现:
java
List<Future> futures = new ArrayList<>();
for (int i = 0; i < 5; i++) {
Future future = executor.submit(() -> {
// 调用下游接口并返回结果
});
futures.add(future);
}
// 遍历futures获取结果
for (Future future : futures) {
Result result = future.get();
// 处理结果
}
这样就可以很方便地获取线程池中任务的返回结果进行后续处理了。最后,我们可能还要合并下游接口返回的数据。可以使用Stream API来实现数据的聚合:
java
List results = futures.stream()
.map(future -> future.get())
.collect(Collectors.toList());
Result mergedResult = merge(results);
Stream可以很好地利用多核 CPU,进一步优化性能。到此,经过并发编程的优化,这个接口的瓶颈就基本上解决了。调用下游接口的时间大大缩短,系统的吞吐量也得到了提升。并发编程是一个非常重要且强大的工具,在 Java 中有很多现成的并发工具类供我们使用,例如线程池、Future等,合理利用可以大大优化我们系统的性能。