幸运数

题目大意:输入L(1<=L<=2*10^9)(输入为0时表示结束),幸运数是仅由8组成且是L的最小倍数的那一个数,输出幸运数的位数,若不存在输出0.
样例输入:
8
11
16
0
样例输出:
1
2
0

分析:
888 ⋅ ⋅ ⋅ ⋅ 8 ( k 个 8 ) = L q , 那 么 L = 2 t m , 0 &lt; = t &lt; = 3 且 m 无 5 的 因 子 2 3 ∗ 111 ⋅ ⋅ ⋅ ⋅ 1 ( k 个 1 ) = 2 t m 2 3 − t ∗ 111 ⋅ ⋅ ⋅ 1 ( k 个 1 ) = m ( 1 0 k − 1 ) / 9 = m q 1 所 以 1 0 k = 1 m o d ( 9 m ) 同 时 9 m 与 10 互 质 , 欧 拉 定 理 有 : 1 0 φ ( 9 m ) = 1 m o d ( 9 m ) 要 求 最 小 的 k , 就 有 k ∣ φ ( 9 m ) 888····8(k个8)=Lq, 那么L=2^tm, 0&lt;=t&lt;=3\\ 且m无5的因子\\ 2^3* 111····1(k个1)=2^tm \\ 2^{3-t}*111···1(k个1)=m\\ (10^k-1)/9=mq_1\\ 所以10^k=1 mod(9m)\\ 同时9m与10互质,欧拉定理有:10^{\varphi(9m)}=1mod(9m)\\ 要求最小的k,就有k|\varphi(9m) 8888k8=Lq,L=2tm,0<=t<=3m5231111(k1)=2tm23t1111(k1)=m(10k1)/9=mq110k=1mod(9m)9m1010φ(9m)=1mod(9m)kkφ(9m)

自己照着上面的思路写的:

#include <bits/stdc++.h>

using namespace std;
#define ll long long 

ll mod(ll a,ll r,ll m)  // a^rmod main
{
	ll base =a;
	ll sum=1;
	while(r)
	{
		if(r&1)
			sum=sum*base%m;
		base=base*base%m;
		r>>=1;
	}
	return sum;
}

ll get_phi(ll n)
{
	ll m=sqrt(n+0.5);
	ll ans=n;
	for(int i=2;i<=m;i++) if(n%i==0)
	{
		ans=ans*(i-1)/i;
		while(n%i==0) n/=i;
	}
	if(n>1) ans=ans*(n-1)/n;
	return ans;
}

int main()
{
	ll L;
	while(cin>>L)
	{
		if(L==0) 
			break;
		if(L%16==0|| L%5==0) 
		{
			printf("0\n");
			continue;
		}
		int cnt=0;
		int flag=0;
		while(L%2==0) 
		{
			cnt++;
			if(cnt>3)
			{
				flag=1;
				printf("0\n");
				break;
			}
			L/=2;
		}
		if(flag) continue;
		ll phi=get_phi(9*L);
		if(mod(10,phi,9*L )!=1)
		{
			printf("0\n");
			continue;
		}
		else
		{
			int k;
			for(k=1;k<=sqrt(phi+0.5);k++) if(phi%k==0)
			{
				if(mod(10,k,9*L)==1) 
				{
					printf("%lld\n",k);
					break;
				}
			}
			if(k>sqrt(phi+0.5))printf("%lld\n",phi);
		}
			

		
	}
	return 0;
}

书上写的:

#include <bits/stdc++.h>

using namespace std;
#define ll long long 

ll modular_power1(ll a, ll r,ll m)  // a^r mod m
{
	ll d=1,t=a;
	while(r>0)
	{
		if( (r%2)==1)  d=(d*t)%m;
		r/=2;
		t=t*t%m;
	}
	return d;
}

bool H_div(ll L, ll k) //判定10^k=1(mod 9*L)是否成立
{
	ll m=9*L, num;
	num=modular_power1(10,k,m);
	if(num==1) return true;
	else return false;
}
ll phi(ll n)
{
	ll val=1, i, i_pow;
	int i_exp;
	for(int i=2;i<=n;i++)
	{
		i_exp=0;
		i_pow=1;
		while(n%i==0)
		{
			i_exp++;
			n/=i;
			i_pow*=i;
		}
		if(i_exp!=0) val *= i_pow-i_pow/i;
	}
	return val;
}

int main()
{
	int ncase=0;
	ll L, ph, k;
	while(cin>>L)
	{
		if(L!=0)
		{
			ncase++;
			cout<<"Case"<<ncase<<": ";
			if(L%16==0|| L%5==0) 
				cout<<0<<endl;
			else
			{
				while(L%2==0) L/=2;
				ph=phi(L*9);
				k=1;
				while(1)
				{
					if(ph%k==0)
					{
						if(H_div(L,k))
						{
							cout<<k<<endl;
							break;
						}
					}
					k++;
				}
			}
		}
		else break;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值