原根的定义

下面的图片来自:百度百科

原根的定义: 

原根,是一个数学符号。设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。

1. 原根的定义
设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)
假设一个数g对于P来说是原根,那么g^i mod P的结果两两不同,且有 1<g<P, 0<i<P,那么g可以称为是P的一个原根,归根到底就是g^(P-1) = 1 (mod P)当且仅当指数为P-1的时候成立。(这里P是素数)。

简单来说,g^i mod p ≠ g^j mod p (p为素数)
其中i≠j且i,j介於1至(p-1)之间,则g为p的原根。
求原根目前的做法只能是从2开始枚举,然后暴力判断g^(P-1) = 1 (mod P)是否当且当指数为P-1的时候成立,而由于原根一般都不大,所以可以暴力得到。
2. 原根的性质
(1)可以证明,如果正整数(a,m) = 1和正整数 d 满足a^d≡1(mod 7),则 d 整除 φ(m)。因此Ordm(a)整除φ(m)。在例子中,当a= 3时,我们仅需要验证 3 的 1 、2、3 和 6 次方模 7 的余数即可。
(2)记δ = Ordm(a),则a^1,……a^(δ-1)模 m 两两不同余。因此当a是模m的原根时,a^0,a^1,……a^(δ-1)构成模 m 的简化剩余系。
(3)模m有原根的充要条件是m= 1,2,4,p,2p,p^n,其中p是奇质数,n是任意正整数。
(4)对正整数(a,m) = 1,如果 a 是模 m 的原根,那么 a 是整数模n乘法群(即加法群 Z/mZ的可逆元,也就是所有与 m 互素的正整数构成的等价类构成的乘法群)Zn的一个生成元。由于Zn有 φ(m)个元素,而它的生成元的个数就是它的可逆元个数,即 φ(φ(m))个,因此当模m有原根时,它有φ(φ(m))个原根。 

原根的解释与求解:https://blog.csdn.net/zhouyuheng2003/article/details/80163139#comments

### 如何在 IntelliJ IDEA 中实现与原根相关的数学计算 #### 定义原根的概念 原根是一个数论中的概念,在模算术中有重要应用。对于正整数 \( n \),如果存在一个最小的正整数 \( g \) 使得 \( g^k \mod n \) 的结果遍历所有小于 \( n \) 并且与 \( n \) 互质的数,则称 \( g \) 是模 \( n \) 的一个原根。 #### 使用 Java 实现寻找特定模下的原根 为了在 IntelliJ IDEA 中创建并运行这样的程序,可以按照如下方式操作: 1. **新建项目** 打开 IntelliJ IDEA 后选择 `New Project`,然后选择适合的语言环境(这里假设使用的是Java)。设置好项目的名称和路径之后点击完成即可建立一个新的 Java 工程[^1]。 2. **编写代码查找给定数值n的原根** ```java import java.util.ArrayList; import java.math.BigInteger; public class PrimitiveRootFinder { public static void main(String[] args){ int n = 7; // 可以更改为其他想要测试的值 ArrayList<Integer> primitiveRoots = findPrimitiveRoot(n); System.out.println("The primitive roots of " + n + ":"); for (Integer root : primitive Roots) { System.out.print(root + " "); } } private static ArrayList<Integer> findPrimitiveRoot(int p){ BigInteger bigP = BigInteger.valueOf(p); ArrayList<BigInteger> factors = getPrimeFactors(bigP.subtract(BigInteger.ONE)); ArrayList<Integer> result = new ArrayList<>(); outerLoop: for (int i=2;i<p;++i){ boolean isRoot=true; for (BigInteger factor:factors){ if (BigInteger.valueOf(i).modPow(bigP.subtract(BigInteger.ONE).divide(factor),bigP).equals(BigInteger.ONE)){ isRoot=false; continue outerLoop; } } if(isRoot) result.add(i); } return result; } private static ArrayList<BigInteger> getPrimeFactors(BigInteger num){ ArrayList<BigInteger> primeFactors=new ArrayList<>(); BigInteger divisor=BigInteger.TWO; while (!num.equals(BigInteger.ONE)){ if(num.mod(divisor).equals(BigInteger.ZERO)){ primeFactors.add(divisor); num=num.divide(divisor); }else{ do{ divisor=divisor.add(BigInteger.ONE); }while(!isPrime(divisor)); } } return primeFactors; } private static boolean isPrime(BigInteger number){ if(number.compareTo(BigInteger.ONE)<=0)return false; if(number.compareTo(BigInteger.valueOf(3))==0)return true; if(number.mod(BigInteger.TWO).equals(BigInteger.ZERO))return false; for(BigInteger i=BigInteger.valueOf(3);i.multiply(i).compareTo(number)<1;i=i.add(BigInteger.TWO)) if(number.mod(i).equals(BigInteger.ZERO))return false; return true; } } ``` 这段代码定义了一个名为 `PrimitiveRootFinder` 的类,其中包含了用于找到指定整数 \( n \) 下的所有原根的方法 `findPrimitiveRoot()` 。此外还提供了辅助函数 `getPrimeFactors()` 来获取因子列表以及判断素性的简单算法 `isPrime()`. 这些工具共同作用于主方法中,实现了对给定参数 \( n \) 寻找其全部可能存在的原根的功能.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值