python 多元线性回归的系数检验 t p值,多元线性回归检验t检验(P值),F检验,R方等参数的含义...

做线性回归的时候,检验回归方程和各变量对因变量的解释参数很容易搞混乱,下面对这些参数进行一下说明:

1.t检验:t检验是对单个变量系数的显著性检验   一般看p值;    如果p值小于0.05表示该自变量对因变量解释性很强。

2.F检验:F检验是对整体回归方程显著性的检验,即所有变量对被解释变量的显著性检验

394d761c6d75165a3bc42ea6013b17af.png

61c1b79227264c1be3142388ac36b675.png

3.P值:P值就是t检验用于检测效果的一个衡量度,t检验值大于或者p值小于0.05就说明该变量前面的系数显著,选的这个变量是有效的。

4.R方:拟合优度检验

5.调整后的R方:

c01743b938601438eebe47449e3821cf.png

小结:

t检验 --用于对各变量系数显著性检验 --判断标准:一般用p值 0.05来衡量  小于0.05 显著    大于0.05不显著

F检验 --整体回归方程显著性检验(所有自变量对因变量的整体解释) --判定:

4c37eaed276b8078a185af5f426d2cad.png  需查统计分布表来确定

P值:就是用于t检验和F检验的衡量指标。

R方:整体回归方程拟合优度检验,R方的结果越接近于1越好,但是R方会因增加变量而增大,所以引进了调整R方检验。

调整R方:对R方检验的提升,避免受增加变量对R方的影响,配合向后删除模型观测。

不显著的原因概述:不显著有很多原因造成,可能是你的这个变量本身与被解释变量没有相关关系,所以不显著;也可能是解释变量过多,由多重共线性引起,也可能是其他原因。

以上观点不一定完全正确,需进一步参考学习,欢迎大神来指正。

在进行多元线性回归时,常用到的是F检验和t检验,F检验是用来检验整体方程系数是否显著异于零,如果F检验的p值小于0.05,就说明,整体回归是显著的。然后再看各个系数的显著性,也就是t检验,计量经济学中常用的显著性水平为0.05,如果t值大于2或p值小于0.05就说明该变量前面的系数显著不为0,选的这个变量是有用的。

参考文献:

F检验:

F检验(F-test)

最常用的别名叫做联合假设检验(英语:joint hypotheses test),此外也称方差比率检验、方差齐性检验。

它是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。

其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。

————————————————

原文链接:https://blog.csdn.net/sinat_25873421/article/details/80889757

R方,调整后的R放,F检验:

对于线性回归模型,检验参数显著性是不可或缺的步骤。在此,我们推荐利用《一元线性回归:t检验与F检验的关系及拟合优度》来加深理解。这本书将为你展示如何使用统计学原理来分析回归结果,同时也适合那些对假设检验模型拟合优度有兴趣的学习者。 参考资源链接:[一元线性回归:t检验与F检验的关系及拟合优度](https://wenku.csdn.net/doc/4wcz87uqkc?spm=1055.2569.3001.10343) 在Python中,scikit-learn库是进行机器学习统计分析的强大工具。要使用scikit-learn进行一元线性回归并进行t检验F检验,首先你需要准备数据集,并将其分割为特征矩阵X目标向量y。以下是实现步骤示例代码: ```python # 导入必要的库 from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from scipy import stats # 假设你已经有了一个数据集,其中X是特征矩阵,y是目标变量 # 将数据集分为训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建线性回归模型并拟合数据 model = LinearRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) # 计算残差平RSS总离差平TSS residuals = y_test - y_pred rss = sum(residuals ** 2) tss = sum((y_test - y_test.mean()) ** 2) # 计算可决系数R² r_squared = 1 - (rss / tss) # 进行t检验 t_statistic, p_value = stats.ttest_1samp(residuals, 0) # 进行F检验 f_statistic, p_value_f = stats.f_oneway(y_test, y_pred) # 打印结果 print('可决系数:', r_squared) print('t检验统计量:', t_statistic, 'p:', p_value) print('F检验统计量:', f_statistic, 'p:', p_value_f) ``` 在这段代码中,我们首先使用scikit-learn的LinearRegression模块来拟合一元线性回归模型,然后使用scipy的stats模块来进行t检验F检验。我们计算了残差平(RSS)总离差平(TSS),进而得到可决系数R²。t检验用来检验回归系数是否显著不为零,而F检验用于评估整个模型的显著性。通过查看p,我们可以决定是否拒绝原假设。 完成上述步骤后,你将得到一个拟合的一元线性回归模型及其参数的显著性检验结果。如果想要深入学习更多关于线性回归的假设检验以及统计量的详细解释,建议参考《一元线性回归:t检验与F检验的关系及拟合优度》。这本书除了涵盖了本问题的解决案,还提供了详细的理论背景更多的实际应用示例,有助于进一步巩固拓展你的统计学知识。 参考资源链接:[一元线性回归:t检验与F检验的关系及拟合优度](https://wenku.csdn.net/doc/4wcz87uqkc?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值