题目描述:
相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排、五人 一排、七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了。输入包含多组 数据,每组数据包含3个非负整数a,b,c,表示每种队形排尾的人数(a<3,b<5,c< 7),输出总人数的最小值(或报告无解)。已知总人数不小于10,不超过100。输入到文件 结束为止。
样例输入:
2 1 6
2 1 3
样例输出:
Case 1: 41
Case 2: No answer
解析:
定理1 如a被n除所得的余数等b被n除所得的余数,c被n除所得的余数等于d被n除所得的余数, 则ac被n除所得的余数等于b d被n除所得的余数。
用同余式叙述就是:
如a≡b(mod n ),c≡d(mod n )
则ac≡b d(mod n )
定理2 被除数a加上或减去除数b的倍数,再除以b,余数r不变。即
如a ≡ r(mod b ),则a ± b n≡r(mod b )
例如70≡1(mod 3 )可得70±10×3≡1(mod 3 )
【韩信点兵法口诀的原理】</