韩信点兵(hanxin)

该文介绍了韩信点兵问题,通过数学原理和同余方程探讨如何找到满足特定余数条件的最小总人数。文章提供了样例输入和输出,并详细解释了两个定理,以及如何利用这些定理来解决实际问题。韩信点兵法口诀的原理在于将数分解为能被特定数整除的形式,然后求解最小的满足条件的组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:
相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排、五人 一排、七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了。输入包含多组 数据,每组数据包含3个非负整数a,b,c,表示每种队形排尾的人数(a<3,b<5,c< 7),输出总人数的最小值(或报告无解)。已知总人数不小于10,不超过100。输入到文件 结束为止。
样例输入:
2 1 6
2 1 3
样例输出:
Case 1: 41
Case 2: No answer
解析:
定理1 如a被n除所得的余数等b被n除所得的余数,c被n除所得的余数等于d被n除所得的余数, 则ac被n除所得的余数等于b d被n除所得的余数。

用同余式叙述就是:

如a≡b(mod n ),c≡d(mod n )

则ac≡b d(mod n )

定理2 被除数a加上或减去除数b的倍数,再除以b,余数r不变。即

如a ≡ r(mod b ),则a ± b n≡r(mod b )

例如70≡1(mod 3 )可得70±10×3≡1(mod 3 )

【韩信点兵法口诀的原理】</

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值