1.逻辑回归与线性回归的联系与区别
2.逻辑回归的原理
3.逻辑回归损失函数推导及优化
4.正则化与模型评估指标
5.逻辑回归的优缺点
6.样本不均衡问题解决办法
7.sklearn参数
一 .逻辑回归与线性回归的联系与区别
逻辑回归(Logistic Regression)与线性回归(Linear Regression)都属于广义线性回归模型。
在分类问题中,预测属于某类的概率,可以看成回归问题。直接使用线性回归的输出作为概率是有问题的,因为其值有可能小于0或者大于1,这是不符合实际情况的,逻辑回归的输出正是[0,1]区间。线性回归只能预测连续的值,分类算法是输出0和1。需要注意的是:逻辑回归算法本质是分类算法。
线性回归中使用的是最小化平方误差损失函数,对偏离真实值越远的数据惩罚越严重;逻辑回归使用极大似然函数进行参数估计,使用交叉熵作为损失函数,对预测错误的惩罚是随着输出的增大,逐渐逼近一个常数。
(扩展:LR在线性回归的实数范围输出值上施加sigmoid函数将值收敛到0~1范围, 其目标函数也因此从差平方和函数变为对数损失函数, 以提供最优化所需导数(sigmoid函数是softmax函数的二元特例, 其导数均为函数值的f*(1-f)形式)。若要求多元分类,就是要用到softmax了。)
线性回归的损失函数为平方损失函数,如果将其用于逻辑回归的损失函数,则其数学特性不好,有很多局部极小值,难以用梯度下降法求最优。 极大似然函数。