一、题目描述
Input Specification:
Output Specification:
Sample Input 1:
16 15
3 2 1 5 4 6 8 7 16 10 15 11 9 12 14 13
Sample Output 1:
1-5
4-6
7-8
11-11
二、解题思路
这道题目还是有点难想的。题目就是给一串数字,要求在合适的地方截断,使截下来的数字之和等于题目给出的数字M,若不存在这样的数字串,则我们取大于M的最小数值。我们用数组sum表示以第i个数结尾的和。首先呢,我们要找出我们要凑的数字,那么我们可以遍历i,将此时的i作为下界,将N+1作为上界,用二分法找出最接近M的上界nearS,最后再遍历一次,寻找答案为nearS的序号。
三、AC代码
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 100010;
int sum[maxn] = {0};
int nearS = 10000000;
int upper_bound(int L, int R, int x)
{
int left = L, right = R, mid;
while(left < right)
{
mid = (left + right)/2;
if(sum[mid] > x)
right = mid;
else
left = mid + 1;
}
return left;
}
int main()
{
int N;
int M;
scanf("%d%d", &N, &M);
for(int i=1; i<=N; i++)
{
scanf("%d", &sum[i]);
sum[i] += sum[i-1];
}
for(int i=1; i<=N; i++)
{
int j = upper_bound(i, N+1, sum[i-1]+M);
if(sum[j-1] - sum[i-1] == M)
{
nearS = M;
break;
}
else if(j<=N && sum[j] - sum[i-1] < nearS)
nearS = sum[j] - sum[i-1];
}
for(int i=1; i<=N; i++)
{
int j = upper_bound(i, N+1, sum[i-1]+nearS);
if(sum[j-1] - sum[i-1] == nearS)
printf("%d-%d\n", i, j-1);
}
return 0;
}