线代notes_1: MIT18.06 L1-L5

Intro

n linear equations, n unknowns.
E.g:
2 x − y = 0 − x + 2 y = 3 \begin{aligned} 2x-y = 0 \\ -x+2y = 3 \end{aligned} 2xy=0x+2y=3
can be written as:
[ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] \left[ \begin{matrix} 2 & -1 \\ -1 & 2 \end{matrix} \right] \left[ \begin{matrix} x\\ y \end{matrix} \right] = \left[ \begin{matrix} 0\\ 3 \end{matrix} \right] [2112][xy]=[03]
A X = b AX = b AX=b

Row picture

row picture
solution: x = 1 , y = 2 x = 1, y = 2 x=1,y=2

Column Picture

x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\left[ \begin{matrix} 2\\-1 \end{matrix} \right] + y\left[ \begin{matrix} -1\\2 \end{matrix} \right] = \left[ \begin{matrix} 0\\3 \end{matrix} \right] x[21]+y[12]=[03]
to find a linear combination of the columns to produce the new one.

Three variables

2 x − y = 0 − x + 2 y − z = 3 − 3 y + 4 z = 4 \begin{aligned} 2x-y = 0 \\ -x+2y-z = 3 \\ -3y+4z = 4 \end{aligned} 2xy=0x+2yz=33y+4z=4
A = [ 2 − 1 0 − 1 2 − 1 0 − 3 4 ] A = \left[ \begin{matrix} 2 & -1 & 0 \\ -1 & 2 & -1\\ 0 & -3 & 4 \end{matrix} \right] A=210123014

Row picture

Three planes will cross at one point

Column picture

x [ 2 − 1 0 ] + y [ − 1 2 3 ] + z [ 0 − 1 4 ] = [ 0 − 1 4 ] x\left[ \begin{matrix} 2\\-1\\0 \end{matrix} \right] + y\left[ \begin{matrix} -1\\2\\3 \end{matrix} \right] + z\left[ \begin{matrix} 0\\-1\\4 \end{matrix} \right] =\left[ \begin{matrix} 0\\-1\\4 \end{matrix} \right] x210+y123+z014=014
Can I solve A X = b AX = b AX=b for every b b b?
=
Do the linear combs of the columns fill 3-D space?

If the 3 column vectors are in the same plane, their linear combinations cannot produce b b b which is not in this plane.

Singular = not invertible

Lecture 2 Elimination

A = [ 1 2 1 3 8 1 0 4 1 ] − > [ 1 2 1 0 2 − 2 0 4 1 ] − > [ 1 2 1 0 2 − 2 0 0 5 ] A= \left[ \begin{matrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{matrix} \right]->\left[ \begin{matrix} 1&2&1 \\ 0&2&-2 \\ 0&4&1 \end{matrix} \right]->\left[ \begin{matrix} 1&2&1 \\ 0&2&-2 \\ 0&0&5 \end{matrix}\right] A=130284111>100224121>100220125

Augmented Matrix: Take b b b to the right side of A.

Row operation
[ a b ] [ c d e f ] = a [ c d ] + b [ e f ] \left[ \begin{matrix} a&b \end{matrix} \right] \left[ \begin{matrix} c&d\\ e&f \end{matrix} \right]= a\left[ \begin{matrix} c&d \end{matrix} \right] +b\left[ \begin{matrix} e&f \end{matrix} \right] [ab][cedf]=a[cd]+b[ef]

The elimination process:

[ 1 0 0 0 1 0 0 − 2 1 ] [ 1 0 0 − 3 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] \left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 0&-2&1 \end{matrix} \right] \left[ \begin{matrix} 1&0&0 \\ -3&1&0 \\ 0&0&1 \end{matrix} \right] \left[ \begin{matrix} 1&2&1 \\ 3&8&1 \\ 0&4&1 \end{matrix} \right] 100012001130010001130284111
Left multiplication means row operation.
Right multiplication means column operation

Lecture 3 Matrix multiplication and Inverses

Inverses

if A − 1 A^{-1} A1 exists, A − 1 A = I A^{-1}A = I A1A=I

Invertible = nonsingular

If I can find a non-zero vector X X X with A X = 0 AX = 0 AX=0
a little proof:

A X = 0 A − 1 A X = A − 1 0 = 0 X = 0 c o n t r a d i c t s   w i t h   n o n − z e r o AX = 0 \\ A^{-1}AX=A^{-1}0 = 0\\ X = 0 \\ contradicts\ with\ non-zero AX=0A1AX=A10=0X=0contradicts with nonzero

Gauss-Jordan

Assume that a row operation is P P P
if P A = I PA = I PA=I, then P I = A − 1 PI = A^{-1} PI=A1

P [ A   I ] = [ I   A − 1 ] P[A\ I] = [I\ A^{-1}] P[A I]=[I A1]

Lecture 4

( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1
( A T ) − 1 = ( A − 1 ) T (A^T)^{-1} = (A^{-1})^T (AT)1=(A1)T

LU decomposition

[ 1 0 − 4 1 ] [ 2 1 8 7 ] = [ 2 1 0 3 ] \left[ \begin{matrix} 1 & 0 \\ -4 & 1 \end{matrix} \right] \left[ \begin{matrix} 2&1 \\ 8&7 \end{matrix} \right] = \left[ \begin{matrix} 2&1\\ 0&3 \end{matrix} \right] [1401][2817]=[2013]
[ 2 1 8 7 ] = [ 1 0 4 1 ] [ 2 1 0 3 ] \left[ \begin{matrix} 2&1 \\ 8&7 \end{matrix} \right]= \left[ \begin{matrix} 1&0 \\ 4&1 \end{matrix} \right] \left[ \begin{matrix} 2&1\\ 0&3 \end{matrix} \right] [2817]=[1401][2013]
A = L U A = LU A=LU

Lecture 5: Permutations

P A = L U PA = LU PA=LU
P P P: Identity matrix with reordered rows
P − 1 = P T P^{-1} = P^T P1=PT
R T R R^TR RTR is always symmetric:
( R T R ) T = R T R T T = R T R (R^TR)^T = R^TR^{TT} = R^TR (RTR)T=RTRTT=RTR

Vector Space

Additivity and number multiplication.
Every vector space needs the Origin.
R n R^n Rn = all vectors with n real components.
We can multiply, we can add, and we stay in this vector space.

A line passing 0 is a subspace of R 2 R^2 R2

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值