为什么圆柱和圆锥的斜截口曲线是一个椭圆?
首先明确椭圆的定义
“我们把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆(ellipse)。这两个定点叫做椭圆的焦点。两焦点间的距离叫做椭圆的焦距。”
——《高中数学选修2-1(人教版)》

如上图,以经过椭圆两焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy,
设M(x,y)是椭圆上任意一点,椭圆的焦距为2c(c>0),那么焦点F1、F2的坐标分别为(-c,0)、(c,0)。又设M与F1、F2的距离的和等于2a。
由椭圆的定义,椭圆就是集合
P={M||MF1|+|MF2|=2a}.
回到问题:用一个平面去截圆锥,得到的截口曲线为什么是椭圆?
历史上许多人从纯几何角度出发对这个问题进行过研究,其中数学家Germinal Dandelin的方法非常巧妙。

如上图,在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面、截面相切。两个球分别与截面相切于点E,F,在截口曲线上任取一点A,过点A作圆锥的母线,分别与两个球相切于点C、B
(注:C、E在大圆上,B、F在小圆上)。
由球和圆的几何性质,可以知道
AE=AC,AF=AB,
于是AE+AF=AB+AC=BC。
由切点B,C的产生方法可知,它们之间的距离BC是定值。这样截口曲线上任意一点A到两个定点E,F的距离之和为常数。
因此,由椭圆的定义可知,截口曲线就是椭圆。
可用类似的方法证明:当用一个与圆柱的母线斜交的平面去截圆柱,得到的一条截口曲线也是椭圆。
