八年级数学是初中数学的一个分水岭,“初一不分上下,初二两极分化,初三一决上下”,这句顺口溜是对初中生三年学习轨迹的真实写照。
要想在八年级进一步巩固自己已经取得的数学优势,或者想在八年级实现弯道超车,就必须从第一章开始努力学习。八年级数学第一章学习《三角形》,重点需要把握好以下几点。

三角形的边要求会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题;进一步认识三角形的概念及其基本要素,掌握三角形三边关系。
总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点;(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形;(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形。

三角形的高、中线与角平分线需要了解三角形的高、中线、角平分线等有关概念;掌握三角形的高、中线与角平分线的画法;了解三角形的三条高、三条中线、三条角平分线分别交于一点。
总结归纳:1.三角形的高、中线和角平分线都是线段;2.三角形的高、中线和角平分线的概念既可得到角与线段的数量关系,也可作为判定三角形高、中线和角平分线的判定定理。

三角形的稳定性要求通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用。
总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性。

三角形的内角要求会用不同的方法证明三角形的内角和定理;能应用三角形内角和定理解决一些简单的问题。为了说明三角形的内角和为180°,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法。

多边形及内角和要求理解多边形的相关概念;认识凸多边形及正多边形,掌握正多边形的定义及判定。在初中阶段所讲的多边形指的都是凸多边形,已知多边形的边,可以推导出其对角线的条数和分成的三角形的个数;反过来,已知过一点所画对角线的条数或分成的三角形的个数可以推导出多边形的边数。
总结归纳:1.已知多边形的边数可以求出其内角和,根据其内角和也可以求出其边数;2.内角和的推理要用到转化的思想,将多边形的知识转化为三角形的知识。

三角形这章在中考中虽然考点不多,但是它是承上启下的一章。所以刚跨入八年级的学生不能掉以轻心。