大数据pyspark sql分析函数lead()和lag()

本文介绍了Lag和Lead函数在一次查询中获取同一字段前后N行数据的方法,并通过实例展示了如何使用这两个函数来实现数据的前后偏移。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 功能

Lag和Lead函数可以在一次查询中取出同一字段的前N行的数据和后N行的值

2 语法

lag(col, offset=1, default=None)

col 被对比的字段

offset 偏移量

default 默认值

3 不多说,直接上案例

session_window = Window.partitionBy("user_id", "sponsor_id").orderBy(functions.col("event_time").asc())
    diff_df = df.withColumn("lead", functions.lead("event_time", 1).over(session_window))\
        .withColumn("lag", functions.lag("event_time", 1).over(session_window))\
        .filter("user_id is not null and user_id !='' and sponsor_id is not null")\
        .select("page", "sponsor_id", "user_id", "event_time", "lead","lag")

运行效果

4 结论

很明显,lead是往后偏移量,lag是往前一行偏移

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值