运算函数_实变函数复习(1): 新的集合运算

本系列主要目的为应对实变函数论的期末考试, 但会兼顾观点的高度和知识的深度, 比起之前的知识总结会向解题倾斜, 个性化程度会比较高, 请选择性阅读. 本系列的(1)-(5)姑且算是准备工作, 核心内容还是在(6)-(10).

本节目录

  • (1). 偏序关系
  • (2). 集合列的上下极限
  • (3). 集合的对称差
  • (4). 习题补充
  • (5). 本节总结
  • (6). 系列目录

记号和预备知识

首先我们引入序关系. 考虑集合

及其上的二元关系
.

定义 1.1.1

是一个偏序关系, 若
满足以下条件
  • 反身性, 即对任意
    , 都有
  • 传递性, 即对任意
    , 都有
  • 反对称性, 即对任意
    ,都有

在没有歧义的情况下, 直接说

是一个偏序集(poset).
的非空子集
可以自然继承
成为一个偏序集.

如果进一步对任意

, 都有
, 则称
是全序关系,
是全序集.

表示
, 即
.

定义 1.1.2 对偏序集

的子集
中的元素
  • 的极大元, 若
  • 的最大元, 若
  • 的上界, 若
  • 按上述定义方式可以类似定义极小元、最小元、下界
  • 的上确界, 若
    的所有上界(构成
    的子集)的最小元; 类似定义下确界
注记: 基于反对称性, 最大(小)元若存在则必唯一, 因此上(下)确界也是若存在则必唯一. 因此在指定全集
的情况下, 如果
的这些对象存在, 就不妨用
分别表示
的最大元、最小元、上确界、下确界.

定义 1.1.3 若全序集

的任意非空子集都有极小元, 则称
是良序集.

通常空集默认为良序集.

接下来看一个具体的例子, 这个例子与本节内容直接相关.

例子 1.1.4

表示
的幂集, 即
的所有子集构成的集族. 在
上集合的包含关系
是一个偏序关系, 但通常不是全序关系. 对于
的非空子集
, 易得

因此

是良序集.
之后几节会陆续补充一些有关序的知识, 这些东西对理解某些新的概念会有较大的帮助(目的是为了建立更高的观点).

集合列的上下极限

给定一列集合

(
).

定义 1.2.1 上、下极限为

, 则称集合列
收敛, 该集合成为
的极限, 记作
.
注记 这里集合列的极限实际上可以看作某个拓扑空间中的序列极限, 见 [1].

定理 1.2.2

定理 1.2.3

推论 1.2.4

单调递减, 即

收敛且

对单调递增的集合列有类似结论.

练习 1.2.5 对于两列集合

,
(
), 求证

其中

可以是
, 类似结果对下极限同样成立.
只考虑
证明思路 首先可以证明这样一个结果

所以

利用上极限的定义, 考虑到无穷集不可能是两个有限集的并, 能够说明

因而结论成立.
对于其他几个等式完全可以类似证明; 定理可以推广到任意交和任意并的情况; 并思考——
能否是
(笛卡尔积)?

练习 1.2.6 对于一列集合

(
)和给定集合
, 有

证明思路 利用定理1.2.3上下极限的另一种形式

结合De Morgan律很容易证明.

推论 1.2.7 对于两列集合

,
(
), 有

对下极限有类似结果.

提示 把诸
放到某个全集中考虑, 则有
(上标
表示取余集)

集合的对称差

定义 1.3.1 对集合

,
, 称

为二者的对称差.

定理 1.3.2 关于对称差有如下性质

  • (1).
  • (2).
注记 利用Venn图很容易给出仅涉及几个集合的运算规律的证明, 本定理也不例外

定理 1.3.3 给定集合

, 则
可以看作
上的二元运算, 则代数系统
是一个交换幺环, 即有
  • (1).
    满足交换律和结合律
  • (2).
    (乘法幺元)
  • (3).
    满足交换律和结合律
  • (4).
    (加法幺元)
  • (5). 存在由
    唯一决定的
    使得
    (加法逆元)
注记 不难逐一验证.
作为交换群, 可以看作若干(有限或无限)
的积.

推论1.3.4 对任意集合

,
, 存在唯一的集合
使得

习题补充

练习 1.4.1 基于定理1.3.3, 可以自然地定义

证明:

提示 数学归纳法. 并思考,
能否像
那样推广到任意指标集进行.

练习 1.4.2 设两列集合

,
(
) 分别收敛到
,
, 证明:

提示 练习1.2.5和练习1.2.6的直接推论.
也可以替换为
(留给读者).

练习 1.4.3

, 证明:

提示 直接用定义或利用定理1.2.3均不难证明.

练习 1.4.4

表示集合
的特征函数, 即

证明:

证明 只证明第一个式子, 第二个式子完全可以类似证明, 第三个式子直接分类讨论也不难证明. 事实上

练习 1.4.5

(
)是
的函数, 证明:

证明

乍看有点吓人, 但实际上并不困难.

本节总结

集合的对称差和极限是在实变函数论中新引进的(集合)运算方式, 熟练掌握并运用这些新运算的重要性并不亚于对交、并、补等已学内容, 要使之成为构造某些特殊集合的工具. 为了从更高的观点看集合列的极限, 以及之后对集合基数的定义, 我引进了序关系. 本节内容并不难, 所以习题的数量少且难度低. 如有错误, 敬请指出.

系列目录

(一). 知识梳理

  1. 新的集合运算
  2. 序数和基数(上)
  3. 序数和基数(下)
  4. 实数域上的拓扑
  5. 测度论初步
  6. Lebesgue测度
  7. 可测函数及其性质
  8. 可测函数列的收敛性
  9. Lebesgue积分
  10. Lebesgue积分(续)

(二). 习题及解答

  • 实变函数习题解答(1)
  • 实变函数习题解答(2)
  • 实变函数习题解答(3)
  • 实变函数习题解答(4)
  • 实变函数习题解答(5)

(三). 拓展

  • 康托集相关问题整理
  • Lebesgue积分和Riemann积分
  • p次可积函数空间(待写)
  • 单调函数和有界变差函数(待写)

参考

  1. ^https://www.zhihu.com/question/393810530
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值