自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(478)
  • 资源 (4)
  • 收藏
  • 关注

原创 2025最新!人工智能领域大模型学习路径、大模型使用、AI工作流学习路径

人工智能学习路径

2025-03-18 23:43:57 965 1

原创 大模型概述习题

(1)简述零样本学习的定义。零样本学习(Zero-Shot Learning, ZSL)是一种机器学习方法,模型在没有见过某一类样本的情况下,能够识别或处理该类数据。它通过利用类别之间的语义关系(如属性、描述等)来实现对新类别的推理。例如,模型可以通过学习“马”和“斑马”的描述,识别出“斑马”即使从未见过斑马的图像。(2)持续学习是不是一种增量学习方法?它的优势是什么?**持续学习(Continual Learning)**是一种增量学习方法,旨在让模型在不断接收新任务或新数据时,能够持续学习并保留之前学到

2025-03-13 23:13:58 226 1

原创 QtCreator开发工具

片段基础知识片段=一级标题+二级标题+代码片段编辑-首选项-文本编辑器-片段触发和触发种类可理解为一二级标题。

2024-10-24 23:26:25 558

原创 第一个Qt程序

创建项目进入ui界面拖一个按钮在头文件中添加函数说明holle.cpp。

2024-10-24 23:25:41 838

原创 《汇编语言》笔记 寄存器(内存访问)

栈为空,就相当于栈中唯一的元素出栈,出后,SP-SP+2,SP 原来为000EH,加2后 SP=10H,所以,当栈为空的时候,SS=1000H,SP=10H。换一个角度看,任意时刻,SS:SP 指向栈顶元素,当为空的时候,中没有元素也就不存在栈顶元素,所以 SS:SP 只能指向栈的最底部单元下面的单元,该单元的偏移地址为栈最底部的字单元的偏移地址+2,栈最底部字单元的地址为 1000:000E,所以栈空时,SP-0010H.CPU读写一个内存单元的时候,必须先给出这个内存单元的地址。

2024-10-21 23:56:55 1164

原创 《汇编语言》笔记一 寄存器

程序段中的最后一条指令 add ax,bx,在执行前 ax和 bx 中的数据都为 8226H,相加后所得的值为:1044CH,但是 ax 为 16 位寄存器,只能存放 4位十六进制的数据,所以最高位的 1不能在 ax 中保存,ax中的数据为:044CH。程序段中的最后一条指令 add al,93H,在执行前,al 中的数据为 C5H,相加后所得的值为:158H,但是 a1为8位寄存器,只能存放两位十六进制的数据,所以最高位的1丢失,ax 中的数据为:0058H。段地址在 8086CPU 的段寄存器中存放。

2024-10-21 23:55:48 942

原创 Linux命令进阶

例如说明:管道就是将一个命令的输出当作另一个命令的输入,通过|连接多个命令(理解:后一个命令的操作,是在前一个命令的基础上进行的)

2024-10-16 22:26:11 1123

原创 Linux介绍及常用命令

1969 年,AT&T 公司的⻉尔实验室P MIT 合作开发的 Unix,í在于创建⼀个⽤于⼤型、并⾏、多⽤户的操作系统Unix 的推⼴:从学校⾛进企业Unix 的版本要两个:AT&T System V ——就是俗称的 系统 5linux是一种操作系统1991 年,芬兰赫尔⾟基⼤学的学⽣ Linus Torvals 为了能在家⾥的 PC 机上使⽤与学校⼀的操作系统,开始编写了类 UNIX.

2024-10-16 22:25:37 1268

原创 我的创作纪念日

从第一次文章上热榜到新星创作者,一路上写到很多,CSDN也记录着我的成长。高中学习C语言时先了解到了51CTO网站后了解到CSDN。通过CSDN这个平台,认识了许多大佬,了解到前沿技术。想要记录自己的算法解题思路开始了创作生涯。平时学习知识时习惯敲成博客发布。不知不觉已经2048天年。

2024-10-16 16:12:35 245

原创 NDK开发

app为什么会把代码放到so中a) C语言历史悠久,有很多现成的代码可用b) C代码执行效率比Java高c) Java代码很容易被反编译,而且反编译以后的逻辑很清晰为什么要学习NDK开发在安卓的so开发中,其他基本与C/C++开发一致,而与Java交互需要用到jni在本部分的NDK开发讲解中,主要就是介绍jni相关内容so中会接触的:系统库函数、jni调用、加密算法、魔改算法、系统调用、自定义算法什么是JNIjni是Java Native Interface的缩写。

2024-10-15 23:16:29 1120

原创 CryptoJS(消息摘要算法)一

优点:JS实现的算法,可以很方便地被任何语言调用消息摘要算法的其他调用形式字符串解析string转wordArraywordArray转stringHex编码转Base64编码如果函数传入的参数是string类型的数据,将使用默认的Utf8.parse来解析对称加密算法CryptoJS中对称加密算法的使用cfg的详细含义cfg中没有传mode和padding,默认使用CBC的加密模式,Pkcs7的填充方式加密结果是wordArray对象,调用toSt

2024-10-15 23:12:56 336

原创 非对称加密算法

openssl rsa -pubin -in public.pem -text //以文本格式输出公钥内容。pkcs1格式通常开头是 -----BEGIN RSA PRIVATE KEY-----pkcs8格式通常开头是 -----BEGIN PRIVATE KEY-----把PKCS1Padding加密后的密文,用NOPadding去解密,会怎么样呢?没有指明加密模式和填充方式,表示使用默认的RSA/ECB/NOPadding。一般公钥是公开的,私钥保密,私钥包含公钥,从公钥无法推导出私钥。

2024-10-14 20:49:49 969

原创 对称加密算法

RC4 密钥长度1-256字节DES 密钥长度8字节3DES/DESede/TripleDES 密钥长度24字节AES 密钥长度16、24、32字节根据密钥长度不同AES又分为AES-128、AES-192、AES-256序列加密/流加密: 以字节流的方式,依次加密(解密)明文(密文)中的每一个字节RC4分组加密: 将明文消息分组(每组有多个字节),逐组进行加密。

2024-10-14 20:48:33 867

原创 消息摘要算法

a) 消息摘要算法/单向散列函数/哈希函数b) 不同长度的输入,产生固定长度的输出c) 散列后的密文不可逆d) 散列后的结果唯一e) 哈希碰撞f) 一般用于校验数据完整性、签名sign由于密文不可逆,所以服务端也无法解密想要验证,就需要跟前端一样的方式去重新签名一遍签名算法一般会把源数据和签名后的值一起提交到服务端要保证在签名时候的数据和提交上去的源数据一致。

2024-10-11 22:43:51 351

原创 密码学介绍-H5APP逆向-Hex编码-Base64编码

C/C++没有现成的系统API调用,开发者要么自己去实现算法,要么调用别人写好的模块,算法的运行不依赖系统API,因此方法名可以混淆。RSA密钥、加密后的密文、图片等数据中,会有一些不可见字符,直接转成文本传输的话,会有乱码、数据错误、数据丢失等情况出现,就可以使用Base64编码。加密可能部分在JS文件中,部分在Java中,说白了有些代码可以在调试工具中看到,有些代码是Java只能逆向app去找。客户端发送给服务器的数据包中,有些参数不知道来源,可能是随机生成、标准算法加密的、自写算法加密的。

2024-10-11 22:42:53 1431

原创 集成学习和随机森林

每个子模型只看100个样本数据每个子模型不需要太高的准确率。不使用测试数据集,而使用这部分没有取到的样本做测试/验证。虽然有很多机器学习方法,但是从投票的角度看,仍然不够多。决策树在节点划分上,在随机的特征子集上寻找最优划分特征。决策树在节点划分上,使用随机的特征和随机的阈值。提供额外的随机性,抑制过拟合,但增大了bias。集成更多的子模型的意见。针对e2训练第三个模型m3,产生错误e3…针对e1训练第二个模型m2,产生错误e2。每个子模型只看样本数据的一部分。取样:放回取样,不放回取样。

2024-10-09 21:38:06 1201

原创 植物大战僵尸修改器-MFC

MFCApplication2Dlg.cpp中将按钮与函数绑定 添加ON_BN_CLICKED(IDC_COURSE, CMFCApplication2Dlg::OnBtnClickedCourse)在MFCApplication2Dlg.h中添加void CMFCApplication2Dlg::OnBtnClickedCourse();绑定变量DDX_Control(pDX, IDC_KILL, m_bnKill);限制对话框大小 将属性中Border的值改为对话框外框。扫描减少的数值/未变动的数值。

2024-10-09 21:37:40 1267

原创 机器学习-决策树

决策树非参数学习算法可以解决分类问题天然可以解决多分类问题也可以解决回归问题非常好的可解释性。

2024-10-08 22:20:31 1178 1

原创 机器学习-支撑向量机SVM

多项式核函数。

2024-10-08 22:20:02 605

原创 docker快速上手

一个轻量的虚拟机,让程序员不再纠结于环境部署,更多集中于代码编写,基础建设,开发作用:打包:把你软件运行所需的所有东西打包到一起分发:把你打包好的“安装包”上传到一个镜像仓库,任何人可以拿来即用部署:拿着“安装包”就可以一个命令运行起来你的应用,自动模拟出一模一样的运行环境官网下载安装。

2024-10-07 23:16:49 959

原创 数据库多线程操作pymysql

【代码】数据库多线程操作pymysql。

2024-10-07 23:15:57 229

原创 Charles+socksdroid手机抓包配置

用户证书路径: /data/misc/user/0/cacerts-added。利用Magisk的Move Certificates模块 移动证书。系统证书路径:/etc/security/cacerts。安装Move_Certificates-v1.9。使用abd将证书推送到手机。选择刚刚导入手机的证书。

2024-10-04 23:45:16 992 1

原创 AndroidStudio工程目录结构

配置哪些模块在一起编译 include ‘:app’ 只编译app。本机环境配置,SDK、NDK路径等,一般无须改动。gradle配置文件,一般无须改动。配置项目gradle版本。描述工程整体的编译规则。

2024-10-04 23:44:01 367

原创 selenium爬取豆瓣

爬取豆瓣

2024-09-30 23:27:02 865

原创 selenium过webdriver检测

【代码】selenium过webdriver检测。

2024-09-30 23:26:03 933

原创 mongoDB快速上手

MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成。MongoDB 文档类似于 JSON 对象。字段值可以包含其他文档,数组及文档数组,下载下载完成解压缩在目下创建data/db文件夹创建logs/mongo.log创建mongo.config添加环境变量安装服务打开Windows PowerShell执行命令启动服务。

2024-09-28 23:39:13 896

原创 redis快速上手

key-value数据库,,nosql非关系数据库值可以是字符串、哈希、列表、集合和有序集合等类型开启服务器开启客户端设置ip 端口插入数据set xw 132xw为键 132为值获取值获取程度strlen xw追加长度同时设置多个 获取多个。

2024-09-28 23:37:55 947

原创 评价分类结果

对于极度偏斜(Skewed Data)的数据只使用分类准确度是远远不够的使用混淆矩阵做进一步的分析。

2024-02-08 23:17:52 594 1

原创 机器学习-逻辑回归

逻辑回归:解决分类问题逻辑回归既可以看做是回归算法,也可以看做是分类算法通常作为分类算法用,只可以解决二分类问题代码实现实现逻辑回归加载数据使用逻辑回归。

2024-02-08 23:17:19 1222

原创 多项式回归与模型泛化

模型误差=偏差(Bias)+方差(Variance)+不可避免的误差。非参数学习通常都是高方差算法。参数学习通常都是高偏差算法。随着训练样本的逐渐增多,算法训练出的模型的表现能力。传入poly_reg的数据 会依次执行管道的内容。算法所训练的模型过多地表达了数据间的噪音关系。大多数算法具有相应的参数,可以调整偏差和方差。有一些算法天生是高方差的算法。有一些算法天生是高偏差算法。算法所训练的模型不能完整表述数据关系。数据的一点点扰动都会较大地影响模型。通常原因,使用的模型太复杂。如线性回归中使用多项式回归。

2024-02-07 23:36:04 1060

原创 PCA与梯度上升法

主成分分析(Principal Component Analysis)找到一个轴,使得样本空间的所有点映射到这个轴后,方差最大。数据进行改变,将数据在第一个主成分上的分量去掉。求出第一主成分以后,如何求出下一个主成分?如何找到这个让样本间间距最大的轴?主成分个数可解释95%+的方差。在新的数据上求第一主成分。速度提高了 精度降低了。如何定义样本间间距?

2024-02-07 23:35:08 668

原创 机器学习-梯度下降法

并不是所有函数都有唯一的极值点代码演示梯度下降法可视化封装eta = 0.01时eta = 0.001时eta = 0.8时优化 避免死循环eta = 1.1时。

2024-02-06 23:21:28 1262 1

原创 机器学习-线性回归法

通过最优化损失函数或者效用函数,获得机器学习的模型。scikit-learn中的 r2_score。通过分析问题,确定问题的损失函数或者效用函数。样本特征只有一个,称为:简单线性回归。几乎所有参数学习算法都是这样的套路。

2024-02-06 23:19:53 1106

原创 人工智能基础-matplotlib基础

绘制图形绘制多条曲线设置线条颜色设置线条样式设置坐标系设置图示设置标题。

2024-02-03 16:47:59 231

原创 机器学习-基础分类算法-KNN详解

向量空间余弦相似度 Cosine Similarity调整余弦相似度 Adjusted Cosine Similarity皮尔森相关系数 Pearson Correlation CoefficientJaccard相似吸收 Jaccard Coeffcient。

2024-02-03 16:47:23 1446

原创 Pytorch-统计学方法、分布函数、随机抽样、线性代数运算、矩阵分解

distributions 包含可参数化的概率分布和采样函数。Tensor的torch.distributions。0范数/1范数/2范数/p范数/核范数。Pytorch中的奇异值分解。

2024-02-02 23:36:07 1157

原创 PyTorch基础-Tensors属性、Tensor的运算

返回一个标记元素是否为 finite/inf/nan 的mask 张量。标量说零维的张量,向量是一维的张量,矩阵是二维的张量。随机数 正态分布 标准分布。张量高于标量、向量、矩阵。

2024-02-02 22:29:10 1208

原创 人工智能基础-Numpy的arg运算-Fancy Indexing-比较

获取最小值最大值索引。

2024-02-01 19:35:59 427

原创 人工智能基础-Numpy矩阵运算-聚合操作

加、减、乘、除、整除幂、取余、倒数、绝对值三角函数e的x次方、3的x次方、logx、log2为底、log10为底。

2024-02-01 19:35:26 299

原创 人工智能基础-Numpy.array基本操作

concatenate只能合并维度一样的数据。加是copy()则不同步修改。参数为-1时自动识别个数。查看维度(元组形式)

2024-01-31 20:36:04 366

深度学习-多层感知器-建立MLP实现非线性二分类-MLP实现图像多分类 的 data.csv

深度学习-多层感知器-建立MLP实现非线性二分类-MLP实现图像多分类 的 data.csv

2025-03-18

深度学习-卷积神经网络的猫狗数据集

深度学习-卷积神经网络的猫狗数据集

2025-03-05

停车场信息表.xlsx

停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息

2024-01-20

考研周洋鑫高数基础笔记

考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整

2023-12-06

计算机图形学 期末复习 微课版 孔令德 期末复习

计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课

2023-07-02

数据库考纲精华2w字整理

数据库考纲精华2w字整理v1.pdf

2022-05-11

二手房数据-数据分析练习资源.csv

二手房数据-数据分析练习资源

2021-12-12

django博客项目前端模板.rar

django博客项目前端模板

2021-08-04

C语言各章节知识点总结.pdf

.C语言各章节知识点总结

2020-01-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除