自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(451)
  • 资源 (4)
  • 收藏
  • 关注

原创 评价分类结果

对于极度偏斜(Skewed Data)的数据只使用分类准确度是远远不够的使用混淆矩阵做进一步的分析。

2024-02-08 23:17:52 521 1

原创 机器学习-逻辑回归

逻辑回归:解决分类问题逻辑回归既可以看做是回归算法,也可以看做是分类算法通常作为分类算法用,只可以解决二分类问题代码实现实现逻辑回归加载数据使用逻辑回归。

2024-02-08 23:17:19 1129

原创 多项式回归与模型泛化

模型误差=偏差(Bias)+方差(Variance)+不可避免的误差。非参数学习通常都是高方差算法。参数学习通常都是高偏差算法。随着训练样本的逐渐增多,算法训练出的模型的表现能力。传入poly_reg的数据 会依次执行管道的内容。算法所训练的模型过多地表达了数据间的噪音关系。大多数算法具有相应的参数,可以调整偏差和方差。有一些算法天生是高方差的算法。有一些算法天生是高偏差算法。算法所训练的模型不能完整表述数据关系。数据的一点点扰动都会较大地影响模型。通常原因,使用的模型太复杂。如线性回归中使用多项式回归。

2024-02-07 23:36:04 999

原创 PCA与梯度上升法

主成分分析(Principal Component Analysis)找到一个轴,使得样本空间的所有点映射到这个轴后,方差最大。数据进行改变,将数据在第一个主成分上的分量去掉。求出第一主成分以后,如何求出下一个主成分?如何找到这个让样本间间距最大的轴?主成分个数可解释95%+的方差。在新的数据上求第一主成分。速度提高了 精度降低了。如何定义样本间间距?

2024-02-07 23:35:08 603

原创 机器学习-梯度下降法

并不是所有函数都有唯一的极值点代码演示梯度下降法可视化封装eta = 0.01时eta = 0.001时eta = 0.8时优化 避免死循环eta = 1.1时。

2024-02-06 23:21:28 1199 1

原创 机器学习-线性回归法

通过最优化损失函数或者效用函数,获得机器学习的模型。scikit-learn中的 r2_score。通过分析问题,确定问题的损失函数或者效用函数。样本特征只有一个,称为:简单线性回归。几乎所有参数学习算法都是这样的套路。

2024-02-06 23:19:53 1053

原创 人工智能基础-matplotlib基础

绘制图形绘制多条曲线设置线条颜色设置线条样式设置坐标系设置图示设置标题。

2024-02-03 16:47:59 177

原创 机器学习-基础分类算法-KNN详解

向量空间余弦相似度 Cosine Similarity调整余弦相似度 Adjusted Cosine Similarity皮尔森相关系数 Pearson Correlation CoefficientJaccard相似吸收 Jaccard Coeffcient。

2024-02-03 16:47:23 1390

原创 Pytorch-统计学方法、分布函数、随机抽样、线性代数运算、矩阵分解

distributions 包含可参数化的概率分布和采样函数。Tensor的torch.distributions。0范数/1范数/2范数/p范数/核范数。Pytorch中的奇异值分解。

2024-02-02 23:36:07 1041

原创 PyTorch基础-Tensors属性、Tensor的运算

返回一个标记元素是否为 finite/inf/nan 的mask 张量。标量说零维的张量,向量是一维的张量,矩阵是二维的张量。随机数 正态分布 标准分布。张量高于标量、向量、矩阵。

2024-02-02 22:29:10 1094

原创 人工智能基础-Numpy的arg运算-Fancy Indexing-比较

获取最小值最大值索引。

2024-02-01 19:35:59 375

原创 人工智能基础-Numpy矩阵运算-聚合操作

加、减、乘、除、整除幂、取余、倒数、绝对值三角函数e的x次方、3的x次方、logx、log2为底、log10为底。

2024-02-01 19:35:26 251

原创 人工智能基础-Numpy.array基本操作

concatenate只能合并维度一样的数据。加是copy()则不同步修改。参数为-1时自动识别个数。查看维度(元组形式)

2024-01-31 20:36:04 318

原创 人工智能基础-Numpy-创建Numpy数组和矩阵

查看版本array的缺点是没有将数据当做向量或者矩阵,不支持基本运算。查看数据类型对于整型来说赋值浮点数会隐式转换。

2024-01-31 16:06:05 787

原创 Windows编程入门-窗口控件-资源操作

window控件:控件是常见的窗口上的交互元素例如:一个按钮,一个复选框,一个列表框等。当控件的特定功能被触发后,会主动发送消息通知父窗口,父窗口可以通过发送消息给控件控制控件的行为。控件的本质是一个窗口windows窗口从其特点是主要分为两大类WC_LISTVIEW 列表框控件WC_TREEVIEW 树控件WC_TABCONTROL Tab控件控件的响应子控件通知父窗口一些事件,例如子控件被点击,需要通过以下两类消息标准控件的消息:WM_COMMAND。

2024-01-30 21:26:03 2399

原创 Windows编程入门-第一个窗口程序-消息处理

windows操作系统有一个系统消息队列,每个GUI程序,都有自己的消息队列,系统消息队列负责将消息发送给不同GUI程序的消息队列。在左侧的解决方案资源管理器中,右键单击鼠标,选择源文件,添加,新建项,选择C++文件,命名为HelloWorld.cpp。围绕着消息的处理,产生了获取消息的消息泵机制也叫消息循环,以及处理消息的窗口回调函数机制。每一个窗口都在不停的处理消息,所有的操作都是接收到消息之后,进行处理的结果。特指WM_NOTIFY消息,只使用用windows的公共控件,如列表,视图等。

2024-01-30 21:25:30 816

原创 Matplotlib应用-股票技术分析实战

通过价格波动的真实波幅来反映价格走势的强弱和超买超卖现象,在价格尚未上升或下降之前发出买卖信号的一种技术分析指标,适用于短期行情走势分析。只设置最小的观测值数量,不固定窗口大小,实现累计计算,即不断扩展,连用expanding().max()->创新高。Pandas中指数加权移动窗口函数采用ewm函数+mean()快捷计算MACD。Matplotlib柱状图函数,高效绘制MACD中的柱状。每个窗口都是指定的固定大小,快捷计算Ln与Hn。11/13 +今日收盘价。25/27 +今日收盘价。

2024-01-29 22:34:11 871

原创 统计学-认识数据

如:定性数据:性别:男、女颜色:红、绿、青、蓝、紫教育程度:高中、本科、硕士、博士评价:好评、中评、差评定量数据:年份:2019、2018、2017、2016温度:10、15、20、25、30、35、40身高:160、165、170、175、180体重:40、45、50、55、60、65。

2024-01-29 20:33:14 1281

原创 爬虫基础-前端基础

Html是骨骼、css是皮肤、js是肌肉,三者之间的关系可以简单理解为m(html)-v(css)-c(js)

2024-01-28 22:21:31 1081 1

原创 爬虫基础-计算机网络协议

一个数据的传输这些设备的数据转发是通过协议来完成的,整个互联网可以说是完全由网络协议来维持的不同的协议分工不同,比如ip协议确保了ip寻址,tcp协议确保了数据完整性。

2024-01-28 22:20:42 1293 1

原创 Pandas应用-股票分析实战

在量化交易领域,我们通过统计手段对投资品的收益率进行时间序列建模,以此来预测未来的收益率并产生交易信。一个Python 的 2D绘图库,窗以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。以投资品的收益率序列为例,我们会经常观察到一段时间内的收益率之间存在正相关或者负相关。K线图蕴含大量信息,能显示股价的强弱、多空双方的力量对比,是技术分析最常见的工具。Pandas中对DateFrame进行筛选的函数,相当于SQL中的where。金融时间序列的一个最重要特征是序列相关性。每月平均收盘价与开盘价。

2024-01-26 21:54:12 539

原创 Numpy应用-股价分析实战

英文名VWAP(Volume-Weighted Average Price,成交量加权平均价格)是一个非常重要的经济学量,代表着金融资产的“平均”价格。卷积是时空响应的叠加,可用作计算“滑动平均”对数波动率的标准差除以其均值,再除以交易日倒数的平方根,通常交易日取250天。对数收益率的标准差除以其均值,再乘以交易月的平方根通常交易月取12月。一般用于分析时间序列上的股价趋势计算股价与等权重的指示函数的卷积。历史数据的权重以指数速度衰减计算股价与权重衰减的指示函数的卷积。波动率是对价格变动的一种衡量。

2024-01-26 21:52:07 523

原创 股票交易维度和概念

股票:股份公司为筹集资金而发行给各个股东作为持股凭证并借以取得股息和红利的一种有价证券好处:分红、送股配股、交易收益、本金少、易变现、避免货币贬值。

2024-01-25 23:26:25 1286

原创 必知的量化交易基础

量化交易是指以先进的数学模型代替人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策–百度百科。期货:一种标准化合约,期货交易所统一制定的、约定在未来的某一个确定的日期和地点按照约定的条件买卖一定数量和质量的标的资产的标准化合约。从大量数据中找到某种规律,包括但不限于文本数据,图像数据等,找到可盈利,可量化,可执行的策略信号。基金中的基金,是一种专门投资于其他投资基金的基金。

2024-01-25 17:15:38 756

原创 量化交易-获取股票数据

股票的由来股票:股份公司发行的所有权凭证、一种投资工具、投资介质股票的特性股票:股份公司的所有权凭证、盈亏自负基金:投资组合(股票、债券、现金)债券:还本付息的有价证券(国债、企业债、金融债券)风险股票>基金>债券收益股票>基金>债券。

2024-01-24 17:25:55 1009

原创 量化交易科普

语言和逻辑层面,用量词指定一个谓词的有效性的广度的构造一些、很多、所有针对可交易的投资商品,理性地运用逻辑分析和归纳统计判断市场趋势相关平台财经网站:新浪、雅虎、东方财富等证券公司:中信、中金、国信、天风等炒股平台:同花顺、通达信、大智慧等K线:长方形 包含开盘价、收盘价、最高价、最低价、 (绿为跌、红为涨)净利润率市盈率。

2024-01-24 13:45:31 307

原创 迁移混合模型-基于新数据的迁移学习预测-寻找普通苹果与其他苹果

以已经训练好的模型A为起点,在新场景中,根据新数据建立模型B。目的:将某个领域或任务上学习到的知识或模式,应用到不同但相关的领域或问题中。英文:transfer learning模型A存储了模型结构、权重系数(weights)模型B基于新数据,实现了对模型A的部分结构或权重系数的更新使用模型A,移除输出层,提取目标特征信息使用模型A的结构,重新/二次训练权重系数参数使用模型A的结构,重新训练部分层的权重系数参数不用局限于某种方式,根据情况灵活运用。

2024-01-23 23:22:49 1484

原创 深度学习-循环神经网络-RNN实现股价预测-LSTM自动生成文本

解决更复杂的序列任务,可以把单层RNN叠起来或者在输出前和普通mlp结构结合使用。模型结构:单层LSTM,输出有20个神经元;词汇数值化:建立一个词汇-数值一一对应的字典,然后把输入词汇转化数值矩阵。模型结构:单层RNN,输出有5个神经元;每次使用前8个数据预测第9个数据。前部序列的信息经处理后,作为输入信息传递到后部序列。序列模型:输入或者输出中包含有序列数据的模型。基于文本内容及其前后信息进行预测。做判断时,把后部序列信息也考虑。基于数据历史信息进行预测。突出数据的前后序列关系。

2024-01-23 21:20:14 1584

原创 深度学习-卷积神经网络

对图像矩阵与滤波器矩阵进行对应相乘再求和运算,转化得到新的矩阵。作用:快速定位图像中某些边缘特征英文:convolition将图片与轮廓滤波器进行卷积运算,可快速定位固定轮廓特征的位置计算机根据样本图片,自动寻找合适的轮廓过滤器,对新图片进行轮廓匹配自动求解W,寻找合适的过滤器一个过滤器不够,需要寻找很多过滤器池化:按照一个固定规则对图像矩阵进行处理,将其转换为更低维度的矩阵保留核心信息的情况下,实现维度缩减把卷积、池化、mlp先后连接在一起,组成卷积神经网络。

2024-01-22 21:04:53 1433

原创 深度学习-多层感知器-建立MLP实现非线性二分类-MLP实现图像多分类

机器学习领域中非常经典的一个数据集,由60000个训练样本和10000个测试样本组成,每个样本都是一张28*28像素的灰度手写数字图片。

2024-01-22 21:04:17 1477

原创 fetch failure on https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weig

用户文件夹下面.keras\models。现在完成后将文件移动到。

2024-01-21 15:54:04 349

原创 机器学习-模型评估优化

尝试不同的n_neighbors(1-20),计算其在训练数据集、测试数据集上的准确率并作图。拟合反应速率(rate)与温度(temperature)数据,预测85度时的反应速率。计算测试数据集对应的混淆矩阵,计算准确率、召回率、特异度、精确率、F1分数。建立模型的意义,不在于对训练数据做出准确预测,更在与对新数据的准确预测。对全数据进行数据分离,部分用于训练,部分用于新数据的结果预测。混淆矩阵,又称为误差矩阵,用于衡量分类算法的准确程度。通过混淆矩阵,计算更丰富的模型评估指标。模型训练 计算分类准确率。

2024-01-21 15:52:19 1053

原创 机器学习入门

让机器 去学习让机器 去执行最早的机器学习应用-垃圾邮件分辨人类学习方式机器学习。

2024-01-21 15:51:18 389

原创 机器学习-决策树-异常检测-主成分分析

PCA(principal components analysis):数据降维技术中,应用最最多的方法。ID3:利用信息熵原理选择信息增益最大的属性作为分类属性,递归地拓展决策树的分枝,完成决策树的构造。数据包括:雇主补贴、消费资料和生产资料、纯公共支出、净增库存、股息、利息、外贸平衡等十七个指标。数据降维:指在某些限定条件下,降低随机变量个数,得到一组“不相关”主变量的过程。如何保留主要信息:投影后的不同特征数据尽可能分得开(即不相关)目标:寻找k(k

2024-01-20 17:33:34 1717

原创 机器学习之聚类-2D数据类别划分

给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中。以空间中k个点为中心进行聚类,对最靠近他们的对象归类,是聚类算法中最为基础但也最为重要的算法。机器学习的一种方法,没有给定事先标记过的训练示例,自动对输入的数据进行分类或分群。聚类分析又称为群分析,根据对象某些属性的相似度,将其自动化分为不同的类别。一种基于密度梯度上升的聚类算法(沿着密度上升方向寻找聚类中心点)方式三:蓝眼球或不是蓝眼球。

2024-01-20 17:32:38 1415

原创 内存分析CE寻找天龙八部人物状态及基址

扫描类型为未知的数值首次扫描通过改变角色状态 扫描类型变动的数值和未变动的数值扫描地址选择3FCBD25C为人物状态地址0站立 2走路 6打坐 7打怪。

2024-01-19 20:15:16 984

原创 汇编语言基础

任何程序在CPU上执行都是通过机器语言的0和1转化而来的电信号是电脑CPU直接读取运行的机器码,运行速度最快,但是非常晦涩难懂,同时也比较难编写;机器码就是计算机可以直接执行,并且执行速度最快的代码字节码是一种中间状态的二进制代码,需要直译器转译后才能成为机器码汇编语言是机器语言0和1的助记符,相当于一个封装。

2024-01-19 20:14:30 412

原创 Move_Certificates-v1.9安装-Magisk movecert模块安装时出现‘unzip error‘的解决办法

安装成功。

2024-01-12 22:32:53 2473 4

原创 机器学习之逻辑回归-考试通过预测-预测芯片质量通过

逻辑回归:用于解决分类问题的一种模型。根据数据特征或属性,计算其归属于某一类别的概率P(X),根据概率数值判断其所属类别。分类:根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。分类问题,标签与预测结果都是离散点,使用该损失函数无法寻找极小值点。逻辑回归判断小明是否去看电影(余额-10、100)使用逻辑回归拟合数据,可以很好的完成分类任务!逻辑回归结合多项式边界函数可解决复杂的分类问题。线性回归的局限性:样本量变大以后,准确率下降。任务:根据余额,判断小明是否会去看电影。

2024-01-10 17:35:15 546

原创 机器学习之线性回归-多因子房价预测

机器学习是一种实现人工智能的方法从数据中寻找规律、建立关系,根据建立的关系去解决问题机器学习的应用场景数据挖掘、计算机视觉、自然语言处理、证券分析、医学诊断、机器人…

2024-01-10 17:33:38 1112

停车场信息表.xlsx

停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息表.xlsx停车场信息

2024-01-20

考研周洋鑫高数基础笔记

考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整理合并版本、考研周洋鑫高数基础笔记2023版整

2023-12-06

计算机图形学 期末复习 微课版 孔令德 期末复习

计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课版 孔令德 期末复习重点 一到八章节重点知识点整理 期末特种兵 2天过期末考试 计算机图形学 期末复习 微课版 孔令德 期末复习重点 计算机图形学 期末复习 微课

2023-07-02

数据库考纲精华2w字整理

数据库考纲精华2w字整理v1.pdf

2022-05-11

二手房数据-数据分析练习资源.csv

二手房数据-数据分析练习资源

2021-12-12

django博客项目前端模板.rar

django博客项目前端模板

2021-08-04

C语言各章节知识点总结.pdf

.C语言各章节知识点总结

2020-01-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除