欢迎关注我的公众号 [极智视界],获取我的更多笔记分享
O_o
>_<
o_O
O_o
~_~
o_O
本文主要聊一下深度学习模型量化相关策略。
模型小型化是算法部署的关键技术,模型小型化的过程通常用模型量化来描述。量化通常是高比特位到低比特位的映射过程,量化的对象既可以是权重数据,也可以是激活值。量化方式具有多种形态,不管是混合量化、还是全整型量化;不管是单层量化、成组量化、还是整网量化,都存在浮点数映射到整型数的过程,这个过程一定存在精度损失,而对于我们来说,要做的是把精度损失控制在可接受的范围。
量化又可以分为后量化、训练时量化又或是量化感知训练。后量化相比训练时量化,是一种更加高效和无侵入式的算法加速技术,这里主要聊一下后量化,包括一些主要的量化类型和量化策略:
- 量化类型:非对称量化和对称量化、非线性量化和线性量化;
- 量化策略:MinMax、KLD、ADMM、EQ;