极智AI | 谈谈几种量化策略:MinMax、KLD、ADMM、EQ

欢迎关注我的公众号 [极智视界],获取我的更多笔记分享

O_o>_<o_OO_o~_~o_O

  本文主要聊一下深度学习模型量化相关策略。

  模型小型化是算法部署的关键技术,模型小型化的过程通常用模型量化来描述。量化通常是高比特位到低比特位的映射过程,量化的对象既可以是权重数据,也可以是激活值。量化方式具有多种形态,不管是混合量化、还是全整型量化;不管是单层量化、成组量化、还是整网量化,都存在浮点数映射到整型数的过程,这个过程一定存在精度损失,而对于我们来说,要做的是把精度损失控制在可接受的范围。

  量化又可以分为后量化、训练时量化又或是量化感知训练。后量化相比训练时量化,是一种更加高效和无侵入式的算法加速技术,这里主要聊一下后量化,包括一些主要的量化类型和量化策略:

  • 量化类型:非对称量化和对称量化、非线性量化和线性量化;
  • 量化策略:MinMax、KLD、ADMM、EQ;

1、量化类型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极智视界

你的支持 是我持续创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值