Matlab一元非线性回归分析的分析步骤与一元线性回归分析的步骤类似:
大体分为以下几步:
(1)绘制x,y的散点图,分析散点图的走势;
(2)根据散点图的走势,确定回归方程的具体形式,特别是参数个数的设定和设定初始值;
(3)调用NonLinearModel的fit方法进行模型拟合;
(4)模型改进,去除异常值的操作;
(5)进行残差分析,验证模型。
下面以某商品的数量与定价为例,进行实例展示;
(1)绘制x,y的散点图,分析散点图的走势;
[data,y0]=xlsread('C:\Users\箫韵\Desktop\Matlab数理与统计分析\exdata\test1',3);
x=data(:,2);%提取列数据自变量数据
y=data(:,3);%提取列数据因变量数据
figure;
plot(x,y,'ko');%绘制散点图
xlabel('数量');
ylabel('价格');

图1 散点图
(2)根据散点图的走势,确定回归方程的具体形式,特别是参数个数的设定和设定初始值;
%建立一元非线性回归方程
% yi=f(xi;b1,b2)+ai
% ai~N(0,aa^2),i=1,2,..n
price=@(beta,x)beta(1)./(1-beta(2)*x);%根据散点图趋势建立方程f(x)=b1./(1-b2*x),方程形式并不唯一。
beta0=[120,0.008];%beta0为b1,b2的初始值。根据x的取值范围,x在22与

 
                   
                   
                   
                   本文详细介绍了使用MATLAB进行一元非线性回归分析的步骤,包括绘制散点图、确定回归方程、模型拟合、异常值处理和残差分析。以商品数量与定价为例,通过代码示例展示了整个分析过程。
本文详细介绍了使用MATLAB进行一元非线性回归分析的步骤,包括绘制散点图、确定回归方程、模型拟合、异常值处理和残差分析。以商品数量与定价为例,通过代码示例展示了整个分析过程。
           最低0.47元/天 解锁文章
最低0.47元/天 解锁文章
                           
                       
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   1万+
					1万+
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            