- 博客(387)
- 资源 (3)
- 收藏
- 关注
原创 Sora文字小说一段生成一张图体检
最后所有生成的内容就在MyMedia,这个是免费的,至于视频是收费的,我还没试过。后面使用remix功能,上传了一涨卡通人物的图片,然后小说原文中文直接发过去,发现直接生成了这个功能。这是第一张生成的画面给的提示词是英文。下面我随便说搜到的某小说片段。
2025-04-16 10:34:59
163
1
原创 Mybatis加密解密查询操作(sql前),where要传入加密后的字段时遇到的问题
chatgpt:Mybatis加密解密查询操作(sql前),where要传入加密后的字段时遇到的问题。
2024-12-19 13:46:53
1065
原创 npm 安装newman时idealTree:vue: sill idealTree buildDeps卡住了(实测成功)
【代码】npm 安装newman时idealTree:vue: sill idealTree buildDeps卡住了(实测成功)
2024-09-26 14:35:22
551
2
原创 OpenAI用GPT-4解释了GPT-2三十万个神经元:智慧原来是这个样子
在一个神奇的未来世界,有一个叫做“AI大脑”的神秘装置,它能用来理解和解释大脑的工作原理。然后,GPT-4开始发挥它的魔法,生成对这个神经元的解释,就像一个老师在课堂上讲解数学题的过程一样。然后,科学家们将GPT-4生成的解释与实际的神经元激活进行比较,就像是对比学生的答案和正确答案。在这个故事中,我们看到了科学家们如何利用GPT-4来解开AI大脑的秘密,并探索如何更好地理解和解释AI的工作原理。尽管这项工作还处于起步阶段,但它为未来的研究开辟了新的方向,让我们对AI的智能和可解释性有了更多的期待。
2024-08-29 14:38:39
306
原创 如何让Retinaface训练的更快更平滑
pin_memory 的作用:在你的 train 函数中,设置 pin_memory=True 会导致 DataLoader 将数据加载到锁页内存中,从而提高数据加载速度。non_blocking 的作用:在将数据从 CPU 转移到 GPU 时使用了 non_blocking=True,这使得数据传输不会阻塞主线程。使用 pin_memory=True 和 non_blocking=True 可以确保数据传输尽可能快,从而使 GPU 计算资源得到更好的利用。使用pin_memory=True。
2024-08-16 10:54:33
541
原创 一键生成视频并批量上传视频抖音、bilibili、腾讯(已打包)
Github地址:https://github.com/cmdch2017/GenerateAndAutoupload。
2024-08-02 16:48:17
3186
6
原创 orbbecViewer不能打开或者显示不出摄像头
Visual Studio 2022 通常包含必要的运行时库,但它使用的是更新的 Visual C++ 运行时库版本。如果你需要特定的 MSVCR120.dll 文件(它属于 Visual C++ 2013 Redistributable),你仍然需要安装 Visual C++ 2013 Redistributable。通过上述方法,你可以确保系统中包含所需的 MSVCR120.dll 文件。在“单个组件”选项卡中,找到并勾选“C++ 2013 Redistributable Update 5”。
2024-07-26 15:53:39
806
原创 Xshell 连接到运行在 WSL 上的 Ubuntu
在 WSL 中运行的 Ubuntu 通常只包含命令行界面(CLI),但你可以安装 X Window 系统服务器(如 Xming、VcXsrv)在 Windows 上,并配置 WSL 以便将图形应用程序的显示转发到 Windows 上的 X Window 服务器。在 WSL 的 bash shell 中,设置 DISPLAY 变量以将图形应用程序的显示转发到 Windows 上的 X Window 服务器。在 WSL 中安装必要的 X Window 相关软件,如 xorg, x11-apps 等。
2024-07-09 15:18:46
775
原创 python项目加密和增加时间许可证
1.bat,执行如下的命令,第一句是更新或增加许可证。第二句是加密draw_face.py。绘制自制人脸.py,调用代码。
2024-06-24 16:09:09
410
原创 绘制口罩maskTheFace数据源是300w_lp
输入:图像(image),六个关键点(six_points),角度(angle),参数(args),类型(type)。输入:面部关键点(face_landmark),图像(image),类型(type)。通过以上步骤和角度的计算,可以在面部图像上精确地绘制口罩,使其与面部特征完美贴合。输入:面部关键点(face_landmark),图像(image)。输入:线(line),面部关键点(face_landmark)。输出:面部的六个关键点,角度(angle)。输出:眼睛中线,垂直线,左右点,中点。
2024-06-23 16:29:05
242
原创 dlib安装不上,CMake must be installed to build dlib
安装的时候比如我是3.9我就安装cp39的,如果是3.10,那就找cp310的。
2024-06-22 09:21:55
226
原创 Retinaface训练超参数调优
更精细的范围:由于在0.001478、0.004197和0.002786处有较低的损失,可以进一步缩小到0.001到0.002和0.004到0.005之间。在0.001到0.002之间试验更多的学习率值,例如0.0011, 0.0015, 0.0018等。综合考虑损失较低和稳定性,学习率范围可以集中在0.001到0.005之间。通过这些步骤,您可以更准确地找到最佳学习率,从而进一步降低损失,提高模型的性能。低损失区域:找出在较低损失值对应的学习率范围。稳定性:选择一个损失值较低且稳定的学习率范围。
2024-06-21 16:47:28
273
原创 超参数如 momentum、weight_decay 和 gamma 对深度学习模型的训练效果有重要影响
影响:合适的学习率调整策略可以确保模型在训练初期快速学习,并在后期稳定收敛。然而,动量过大可能导致模型在损失表面上来回震荡,而动量过小则可能使得训练过程变得缓慢。影响:适当的权重衰减有助于防止模型过拟合,提高模型的泛化能力。然而,过大的权重衰减可能导致欠拟合,即模型无法很好地拟合训练数据。学习率调整因子:根据具体的学习率衰减策略(如阶梯衰减、余弦衰减等)设置,一般在 0.1 到 0.5 之间。过大:学习率衰减过快,模型可能提前停止学习,导致性能不佳。过小:学习率衰减过慢,可能导致训练时间过长。
2024-06-19 11:00:35
646
原创 x-anylabelimg如何标识人脸
选用Yolov6Lite_l-Face MeiTuan生成的文件格式,略作调整自动保存成同一目录下的json文件,json文件内容就是左上、右上、右下、左下的点,根据你要的形式处理后续的数据集。未下载的模型需要安全上网下载。
2024-06-12 16:04:58
354
原创 【笔记】深度学习入门
权重和损失值,尝试逼近最优解,理论上切线方向最好,但是梯度方向是随机的,所以每个节点梯度都不,一开始学习率不能大,只能小一点,梯度下降的目的是为了求最优参数,也就是沿着梯度的相反方向函数值减少最快。我们得到的是一个输入的得分值,但是如果给一个概率不是更清晰儿地描述这个事情吗?比如下图是三分类,学出来的这个差异还不够大,所以权重有3072个,假设有10组类别,注意权重是一个矩阵。每个权重参数都分别计算出最优解。3=3072个任务点。
2024-06-11 16:29:46
402
原创 Retinaface与hopenet网络
需要先从Retinaface检测到的人脸区域中截取出人脸图像,然后对该图像进行姿态估计。用于估计人脸姿态,即人脸的俯仰角(pitch)、偏航角(yaw)和滚转角(roll)。提供人脸的边界框(bounding boxes)和面部特征点(landmarks)。使用Hopenet网络对该人脸图像进行姿态估计,得到俯仰角、偏航角和滚转角。计算每个人脸框内的平均深度值,选择深度值最小的人脸(即最近的人脸)。对最近人脸的边界框区域进行裁剪,得到人脸图像face_img。返回该最近人脸的边界框。
2024-05-30 10:32:24
371
原创 初步研究Pose_300W_LP datasets.py
这里定义了一个从 -99 到 102 的数组,步长为 3,表示将范围 [-99, 102) 分成宽度为 3 的区间。np.digitize 函数用于将 yaw、pitch 和 roll 的连续值映射到上述定义的区间中。1 的操作是为了将结果的索引从0开始。示例:假设 yaw = 10, pitch = -15, roll = 45,通过分箱后的结果 binned_pose 可能是 [36, 28, 48]。
2024-05-29 16:39:55
827
原创 【安全操作系统】皮尔逊系数观察人脸旋转与人脸位置的关系
比如,左边框位置与左眼位置的差异应该在一个合理的范围内,面积也应该在一个合理的范围内。首先,我们可以设定一些阈值,比如左边框和左眼位置的差异不应该超过某个值,人脸面积也应该在一个合理的范围内。接下来,我们将计算这些变量之间的相关系数,以量化它们之间的线性关系。综上所述,我们可以得出角度与左边框、左眼位置、面积之间存在一定程度的关联性,其中左边框位置与角度的关联性最强,而面积与角度的关联性最弱。角度与左边框位置之间存在较强的正相关关系,相关系数为0.838,这意味着角度增加时,左边框位置也会增加。
2024-05-06 16:34:49
782
原创 批量人脸画口罩
网上参考的修改了一下,图片放在根目录,命名叫做1.png,批量人脸画口罩。这个程序的目的是为了解决人脸数据集中的特征点缺失的不足。
2024-04-18 17:27:04
226
原创 安全操作代码优化思路
针对人脸姿态估计任务,可以使用更适合的损失函数来提高模型的性能。考虑调整模型架构以提高性能,您可以尝试使用更先进的模型或添加额外的模块。对错误案例进行可视化分析,以便进一步理解模型出错的原因,并根据需要调整模型架构、损失函数等。分析推理过程中模型的中间输出,例如检查人脸检测结果的准确性以及姿态估计的准确性。可以尝试不同的主干网络结构,或者增加更深、更宽的网络层次,以提升模型的性能。使用学习率调度策略,例如学习率衰减、动态调整学习率等,以优化模型的训练过程。合理的训练策略可以加速模型收敛并提高泛化能力。
2024-04-10 11:18:28
522
原创 C# 登录界面代码
它将用户界面(View)、业务逻辑(ViewModel)和数据模型(Model)分离开来,以提高代码的可维护性和可测试性。LoginVM 类是 ViewModel(视图模型),它充当了 View 和 Model 之间的中介,处理了视图与数据模型之间的交互逻辑,以及用户操作的响应逻辑。LoginModel 类是 Model(模型),它包含了应用程序的数据和业务逻辑,用于存储和处理用户的身份验证信息。MainWindow 类是 View(视图),负责用户界面的呈现和交互,它是用户直接看到和操作的部分。
2024-03-26 13:58:44
2466
原创 安全操作标定文件与训练模型
默认是https://download.pytorch.org/models/resnet50-19c8e357.pth,实际是300W_LP。本次设计按照两条线路进行,两台设备分别训练300W_LP和AFLW2000。
2024-03-12 17:30:24
438
原创 【趣玩一下】StreamDiffusion一秒100张!实时生成二次元老婆照!
而输入/输出队列主要是利用队列存储缓冲输入和输出,将图像数据预处理等操作与UNet主体网络分隔开,实现管道各个处理环节的并行化,防止处理速度不匹配的情况发生。最后,使用TensorRT、Tiny AutoEncoder等加速模块,对模型进行优化,进一步提升推理速度。RCFG方法则构建一个“虚拟残差噪声”,这样就只需要一次或者零次负样本计算,减少了计算负样本的开销。此外,原先的CFG算法中,需要额外大量计算负样本,导致计算效率低下。如果想要新建一个环境,执行下面的语句,会出现venv环境。
2024-03-07 13:24:28
563
原创 ElasticSearch-SearchRequest
首先,你可以定义一个接口,表示文档类型的通用接口,然后让 HotelDoc 实现这个接口。接下来,在 handleResponse 方法中,你可以将 T 限定为实现了该接口的类型,并调用接口的方法进行处理。是的就是这么几行,一个BoolQuery搞定,有点像MyBatisPlus的QueryWrapper,只需要你会关键字(逻辑:must和、should或)(match模糊搜索,term精确搜索,range范围搜索)是的DSL语句,也就是具体的查询,那么具体的查询怎么写呢?好了会了基础下面的代码能看懂了,
2024-03-07 09:33:25
717
原创 pytorch_retinaface训练Resnet50_Final.pth过程+无图版安装Nvidia+CUDA驱动GPU+torchvision
前四个代表的是人脸框的坐标,其中前两个表示左上角坐标,后两个表示宽高,后面每三个数字为一组,每组前两个数字代表5个特征点xy位置,眼镜,鼻子,嘴角,第三个数字,1代表遮挡,0代表不遮挡,最后一个好像是置信度。请注意:在安装新驱动程序之前,建议卸载旧版本的 NVIDIA 显卡驱动程序,以确保系统的稳定性。b. 在 “自动查找” 部分,NVIDIA 会自动检测你的显卡型号并为你推荐适用的驱动程序。b. 在安装过程中,你可以选择 “自定义安装” 以进行更详细的设置,或选择 “快速安装” 以使用默认选项。
2024-03-06 16:59:31
1720
原创 遮罩面部特征的医生人脸检测前期调研
综合考虑,针对医生佩戴口罩和眼镜的情况,建议选择RGB估计头部姿态的深度CNN模型,并结合粒子滤波等后处理方法来提高模型在视频应用中的稳定性。同时,在训练阶段增加对遮挡情况的数据增强,以提高模型对于遮挡情况的鲁棒性。对于医生戴着口罩和眼镜的情况,遮挡了面部的部分特征,这会对传统的面部姿态估计方法造成挑战。建议:考虑引入更多对光照和遮挡情况鲁棒的特征工程或深度学习模型,或者采用更先进的方法来提高模型的适应性。RGB估计头部姿态的搞笑CNN模型,并采用了粒子滤波的后处理方法提高模型在视频应用中的稳定性。
2024-02-28 09:29:32
369
原创 Linux网卡安装好后自启动
3、创建一个 Systemd 服务单元文件。4、重新加载 Systemd 管理器配置。6、检测最后state是up就好了。2、创建一个脚本文件。
2024-02-23 11:31:17
769
查找算法.pdf
2019-11-02
排序算法.pdf
2019-10-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人