数据结构知识补充:
栈:先进后出; eg:先进0元素,再进1元素,先出来的是1
队列:先进先出; eg:先进0元素,再进1元素,先出来的是0
java中栈对应的实体类为:Stack,常见的方法有:
Modifier and Type | Method and Description |
---|---|
boolean | empty()测试栈是否为空 |
E | peek()在不将其从栈中移除的情况下,查看该栈顶部的对象。在栈为空的时候会报EmptyStackException |
E | pop()删除此栈顶部的对象,并将该对象作为此函数的值返回。在栈为空的时候会报EmptyStackException |
E | push(E item)将一个项目推送到此堆栈的顶部。 |
int | search(Object o)返回对象在此栈上的从1开始的位置。对象不存在则会返回-1 |
java中队列对应的实体类为:Queue,常见的方法有:
Throws exception(发生错误抛异常) | Returns special value(发生错误返回特殊值) | |
---|---|---|
Insert | add(e) | offer(e) |
Remove | remove() | poll() |
返回对头 | element() | peek() |
判断是否为空: | isEmpty() | isEmpty() |
补充一个双端队列(两端都可以出)Deque,常见的方法有:
操作队列头元素:
Throws exception(发生错误抛异常) | Returns special value(发生错误返回特殊值) | |
---|---|---|
Insert | addFirst(e) | offerFirst(e) |
Remove | removeFirst() | pollFirst() |
返回队头 | getFirst() | peekFirst() |
操作队列尾部元素:
Throws exception(发生错误抛异常) | Returns special value(发生错误返回特殊值) | |
---|---|---|
Insert | addLast(e) | offerLast(e) |
Remove | removeLast() | pollLast() |
返回队尾 | getLast() | peekLast() |
判空:isEmpty();
一、题目描述
原文链接:232. 用栈实现队列
具体描述:
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):
实现 MyQueue
类:
- void push(int x) 将元素 x 推到队列的末尾
- int pop() 从队列的开头移除并返回元素
- int peek() 返回队列开头的元素
- boolean empty() 如果队列为空,返回 true ;否则,返回 false
说明:
- 你 只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
- 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
示例 1:
输入:
[“MyQueue”, “push”, “push”, “peek”, “pop”, “empty”]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
提示:
- 1 <= x <= 9
- 最多调用 100 次 push、pop、peek 和 empty
- 假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)
进阶:
你能否实现每个操作均摊时间复杂度为 **O(1) **的队列?换句话说,执行 n 个操作的总时间复杂度为 O(n) ,即使其中一个操作可能花费较长时间。
n 个操作的总时间复杂度为 O(n) ,即使其中一个操作可能花费较长时间。
二、思路分析
这道题就是两个栈来实现队列的先进先出嘛!
我们可以思考思考,如果一组数据进入了栈当中,是先进后出,然后再在取出栈中的数据到另外一个栈中,是不是就是先进先出了!
所以说就是每当需要取出栈顶或者查看栈顶元素的时候,可以把一个栈中的元素(取名为stackIn)放到另一个栈(取名为stackOut)当中,然后再把另一个栈的栈顶元素取出或查看就可以啦!
三、AC代码
class MyQueue {
Stack<Integer> stackIn;
Stack<Integer> stackOut;
public MyQueue() {
stackIn = new Stack();
stackOut = new Stack();
}
public void push(int x) {
stackIn.push(x);
}
public int pop() {
dumpStackIn();
return stackOut.pop();
}
public int peek() {
dumpStackIn();
return stackOut.peek();
}
public void dumpStackIn(){
if (!stackOut.empty()) return;
while (!stackIn.empty()){
stackOut.push(stackIn.pop());
}
}
public boolean empty() {
return stackIn.empty() && stackOut.empty();
}
}
/**
* Your MyQueue object will be instantiated and called as such:
* MyQueue obj = new MyQueue();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.peek();
* boolean param_4 = obj.empty();
*/
四、总结
- 栈基本方法的使用及理解
感谢大家的阅读,我是Alson_Code,一个喜欢把简单问题复杂化,把复杂问题简单化的程序猿! ❤