莫烦PYTHON PyTorch教程P12搭建分类模型代码
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
import torch.nn.functional as F
'''
教程P12:利用torch解决分类问题
'''
n_data = torch.ones(100,2)
# normal函数表示表示张量2*n_data附近标准差为1的正态分布值
x0 = torch.normal(2*n_data,1) # 类0 x数据 (tensor),shape=(100,2)
y0 = torch.zeros(100) # 类0 y数据 (tensor),shape=(100,1)
x1 = torch.normal(-2*n_data,1) # 类1 x数据 (tensor),shape=(100,2)
y1 = torch.ones(100) # 类0 y数据 (tensor),shape=(100,1)
x = torch.cat((x0,x1),0).type(torch.FloatTensor) # x数据为32位浮点数
y = torch.cat((y0,y1),).type(torch.LongTensor) # y数据为64位整数
x, y = Variable(x), Variable(y)
# plt.scatter(x.data.numpy()[:,0],x.data.numpy()[:,1],c=y.data.numpy(),s=100,lw=0,cmap='RdYlGn')
# plt.show()
class Net(torch.nn.Module): # Net需要基础Module模块
# _init_函数包含定义层信息
def __init__(self, n_feature, n_hidden, n_output): # n_features,n_hidden,n_output分别是输入特征数、隐藏层神经元数和输出特征数
super(Net, self).__init__() # 需要继承Net(官方步骤)
self.hidden = torch.nn.Linear(n_feature, n_hidden, ) # 一层隐藏层 Linear是全连接网络
self.predict = torch.nn.Linear(n_hidden, n_output) # 预测层
# forward前向传播函数
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net = Net(2,10,2) # 2分类问题,输入输出特征数为2
optimizer = torch.optim.SGD(net.parameters(), lr=0.02 ) # 优化器选择SGD,传入神经网络参数和学习率
loss_func = torch.nn.CrossEntropyLoss() # 分类问题用交叉熵损失较好
# 交叉熵损失计算的是每一个分类的概率,所有分类的概率之和为1
plt.ion() # 设置实时打印画图结果
plt.show()
for t in range(100):
out = net(x)
loss = loss_func(out, y)
optimizer.zero_grad() # 所有参数的梯度先降为0
loss.backward() # 反向传播计算所有节点梯度
optimizer.step() # 优化
if t % 2 == 0:
plt.cla()
prediction = torch.max(F.softmax(out),1)[1] # softmax将out输出值转换为概率形式
pred_y = prediction.data.numpy().squeeze()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:,0],x.data.numpy()[:,1],c=y.data.numpy(),s=100,lw=0,cmap='RdYlGn')
accuracy = sum(pred_y == target_y) / 200
plt.text(1.5,-4,'Accuracy=%.2f' % accuracy,fontdict={'size':20,'color':'red'})
plt.pause(0.1)
plt.ioff()
plt.show()