PyTorch学习笔记3——搭建分类模型

莫烦PYTHON PyTorch教程P12搭建分类模型代码

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
import torch.nn.functional as F
'''
教程P12:利用torch解决分类问题
'''

n_data = torch.ones(100,2)
# normal函数表示表示张量2*n_data附近标准差为1的正态分布值
x0 = torch.normal(2*n_data,1)   # 类0 x数据 (tensor),shape=(100,2)
y0 = torch.zeros(100)           # 类0 y数据 (tensor),shape=(100,1)
x1 = torch.normal(-2*n_data,1)  # 类1 x数据 (tensor),shape=(100,2)
y1 = torch.ones(100)            # 类0 y数据 (tensor),shape=(100,1)
x = torch.cat((x0,x1),0).type(torch.FloatTensor) # x数据为32位浮点数
y = torch.cat((y0,y1),).type(torch.LongTensor)   # y数据为64位整数

x, y = Variable(x), Variable(y)

# plt.scatter(x.data.numpy()[:,0],x.data.numpy()[:,1],c=y.data.numpy(),s=100,lw=0,cmap='RdYlGn')
# plt.show()

class Net(torch.nn.Module):  # Net需要基础Module模块

    # _init_函数包含定义层信息
    def __init__(self, n_feature, n_hidden, n_output):  # n_features,n_hidden,n_output分别是输入特征数、隐藏层神经元数和输出特征数
        super(Net, self).__init__()  # 需要继承Net(官方步骤)

        self.hidden = torch.nn.Linear(n_feature, n_hidden, )  # 一层隐藏层  Linear是全连接网络
        self.predict = torch.nn.Linear(n_hidden, n_output)  # 预测层

    # forward前向传播函数
    def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x

net = Net(2,10,2)  # 2分类问题,输入输出特征数为2


optimizer = torch.optim.SGD(net.parameters(), lr=0.02 )  # 优化器选择SGD,传入神经网络参数和学习率
loss_func = torch.nn.CrossEntropyLoss()  # 分类问题用交叉熵损失较好
# 交叉熵损失计算的是每一个分类的概率,所有分类的概率之和为1

plt.ion()  # 设置实时打印画图结果
plt.show()

for t in range(100):
    out = net(x)
    loss = loss_func(out, y)

    optimizer.zero_grad()  # 所有参数的梯度先降为0
    loss.backward()        # 反向传播计算所有节点梯度
    optimizer.step()       # 优化

    if t % 2 == 0:
        plt.cla()
        prediction = torch.max(F.softmax(out),1)[1]  # softmax将out输出值转换为概率形式
        pred_y = prediction.data.numpy().squeeze()
        target_y = y.data.numpy()
        plt.scatter(x.data.numpy()[:,0],x.data.numpy()[:,1],c=y.data.numpy(),s=100,lw=0,cmap='RdYlGn')
        accuracy = sum(pred_y == target_y) / 200
        plt.text(1.5,-4,'Accuracy=%.2f' % accuracy,fontdict={'size':20,'color':'red'})
        plt.pause(0.1)

plt.ioff()
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值