
行列式几何意义,


上图中的体积就是:
假设
而
构造下面行列式,高维外积:
利用拉普拉斯展开可以得到:
显然,
其中,
旋转矩阵是正交矩阵。必然存在一个旋转矩阵
其中
此时,
所以
这就归约到
只要当
根据二维叉乘的定义:
多元函数求积分中的变量代换:
当我们计算多元函数积分时
有时候我们会进行变量替换。即使用
其中:
令
如何替换呢?我们在
这就得到了从:
这个矩阵就称之为雅可比矩阵:
根据行列式可以表示
博客介绍了行列式的几何意义,通过构造行列式、利用拉普拉斯展开等进行推导。还提及多元函数求积分时的变量代换,引入雅可比矩阵,阐述了如何进行变量替换,属于信息技术中数学应用相关内容。

行列式几何意义,


上图中的体积就是:
假设
而
构造下面行列式,高维外积:
利用拉普拉斯展开可以得到:
显然,
其中,
旋转矩阵是正交矩阵。必然存在一个旋转矩阵
其中
此时,
所以
这就归约到
只要当
根据二维叉乘的定义:
多元函数求积分中的变量代换:
当我们计算多元函数积分时
有时候我们会进行变量替换。即使用
其中:
令
如何替换呢?我们在
这就得到了从:
这个矩阵就称之为雅可比矩阵:
根据行列式可以表示
4万+
3001
1万+

被折叠的 条评论
为什么被折叠?