自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(421)
  • 资源 (3)
  • 收藏
  • 关注

原创 《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》第三次印刷

禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》至于巴特沃斯滤波器,就算讲模拟滤波器,错误也太多,幅频响应少个根号,频率变换也是错的,从低通到高通再到带通、带阻,截止频率处的增益哪哪哪都不一样。就行了),那是因为他全尺寸采样滤波器(太荒谬,参数极不可控),那空域滤波器的尺寸与图像尺寸相同,那这样的卷积,边界问题不得不解决。十五年的沉淀和积累,这一版目前没有发现肉眼可见的错误(纠错送书),绝对值得拥有。冈萨雷斯在滤波器部分是大错。

2025-05-26 21:42:36 1211

原创 《数字图像处理》教材寻找合作者

现寻找能够一起讨论、切磋、打磨这一部分内容的合作者。首先要求熟悉Lim这本书第4章和第5章的内容。但这本书过于专业化,我的目标是没有信号处理那么专业,同时又不失科学性(冈萨雷斯纯属瞎说)。Rafael Gonzalez和Richard Woods所著的《数字图像处理》关于滤波器的部分几乎全错,完全从零开始写,困难重重。关于他的问题已经描述在。其他的要求:第一,教学十年以上,第二,有自己独特的见解,不迷信权威,第三,能分担基本的事务性工作。对于胜任此工作者,本书再版的时候给予三作。

2025-03-31 14:04:12 2331

原创 模式识别书稿章节安排

特征提取与选择Feature Extraction and Selection。线性判别分类器Linear Discriminant Classifiers。概率密度估计Probability Density Estimation。距离度量分类器Distance Metric Classifiers。神经网络Shallow & Deep Neural Networks。支持向量机Support Vector Machines。贝叶斯决策Bayes Decision。基本问题Fundamentals。

2025-03-17 18:48:14 533

原创 《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》重印变更的彩插

禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》第一次重印变更的彩插

2025-01-20 22:54:33 1523

原创 模式识别书稿思维导图

模式识别思维导图

2024-03-22 17:36:21 352

原创 禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》

本书对该章重新梳理,从全局特征和局部特征的角度描述特征提取方法,删除了不常用的链码等二值目标描述子,以及直方图矩分析法、频谱分析法等纹理描述子,增加了经典的Harris、HoG等局部特征和描述方法,以及Gabor滤波器组的纹理描述方法等。关于脉冲噪声的统计模型,Gonzalez的前两版中以噪声的概率分布描述,脉冲噪声分布律的概率之和不等于1,后两版以图像的概率分布描述,随机变量取其他值是指任何一个可能值,而不是指其他任何可能值之和,且像素值也有极小值和极大值的可能,不是只有脉冲噪声是极大值或极小值。

2024-03-21 11:50:14 3063 1

原创 禹晶、肖创柏、廖庆敏《数字图像处理》资源二维码

我们给选用教材的教师提供PPT版本的课件以及习题解答,并给予持续的教学支持。关于书中的问题,答读者问。

2024-03-21 07:30:52 504 2

原创 预训练CNN网络的迁移学习(MATLAB例)

要对新图像进行分类,请使用 minibatchpredict。要将预测分类分数转换为标签,请使用scores2label 函数。有关如何使用预训练神经网络进行分类的示例,请参阅使用 GoogLeNet 对图像进行分类。从基于大型数据集训练的神经网络中提取层,并基于新数据集进行微调。本例使用ImageNet中的子集进行微调。原因是这些样本都比较复杂,前景不突出,或者背景复杂,造成特征不明确。没有划分数据集,因为这个例子本身的目的是为了观察CNN的特征变换。的层级分类体系,每个类别有唯一的 ID。

2025-06-12 13:00:05 772

原创 王贝伦《机器学习》

数学公式很规范,能看出功底。绝对好过南京大学的书。需要有高人指点,提高站位。

2025-06-12 11:56:12 79

原创 姜伟生《统计至简》

这学期后半学期有两周一周三次课,我实在没有时间做课件了,甚至连备课的时间都没有了,看到这本书有相关内容,就直接用了。结果上课要啥找不到啥,艰难地上完了课,这处境终身难忘。这套书图真漂亮,字间距也大,特别合适直接作为课件。但是理论上弱,有的地方算法也get不点上。适合初学者,因为能看图说话;又不适合初学者,因为没有解析、没有分析。

2025-06-11 21:32:09 134

原创 杉山将(Sugiyama Masa)《图解机器学习》

这本书如果没有那些傻了吧唧的漫画,总体还是不错的。作者有一定的站位,但是有一种茶壶里煮饺子的感觉。日本东京大学教授,机器学习领域知名学者,专注于统计机器学习、密度比估计等研究方向。[日] 杉山将(Sugiyama Masa)(原版日文名:図解でわかる機械学習)

2025-06-11 21:19:59 219

原创 MNIST数据集上朴素贝叶斯分类器(MATLAB例)

使用pca作为降维,pca是一种非监督的线性降维方法。方差贡献率作为参数。MNIST数据集上朴素贝叶斯分类器。10000个样本的样本集。

2025-06-10 22:56:15 722

原创 克里斯托弗·M. 毕晓普(Christopher M. Bishop)《深度学习基础与概念》

深度学习基础与概念》(Deep Learning Foundations and Concepts),英国作者克里斯托弗·M. 毕晓普(Christopher M. Bishop)和休·毕晓普(Hugh Bishop)。有的书图画的很漂亮,但是理论上弱;有的书一堆公式,云里雾里,抽象难以理解;有的书文字功底很差,不说人话;有的书西一榔头东一棒,完全没有逻辑;有的书有文字表达能力,数学功底很差,错误百出;有的书啰里八嗦,简直浪费我的时间(主要是译作)。这本书在综上水平上算高的,又兼顾前沿。

2025-06-10 07:35:13 176

原创 卷积核、FIR滤波器与LTI系统——一回事

禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》$\S 3$卷积核和$\S 4$FIR滤波器之间的桥梁是卷积定理,时域卷积对应频域滤波。频域滤波器设计是利用频域设计滤波器,而不是说在频域滤波。FIR滤波器是在空域滤波器上定义的。

2025-06-09 17:57:26 1612

原创 詹森不等式(Jensen’s Inequality)——EM算法的基础

设函数fff是定义在区间III上的凸函数(convex function),且随机变量XXX的取值落在IIIEfX⩾fEXEfX)]⩾fEX])若fffEfX⩽fEXEfX)]⩽fEX])函数类型詹森不等式凸函数EfX⩾fEXEfX)]⩾fEX])凹函数EfX⩽fEXEfX)]⩽fEX])

2025-06-09 08:54:25 894

原创 李航《机器学习方法》

国内机器学习的书籍我只服李航,数学功底扎实。但是不适合初学者和半路出家的。那些图解和实战的书籍销量好,只能说明半路出家机器学习的人太多。这本书叫机器学习就好,没有必要叫机器学习方法。

2025-06-08 10:25:24 116

原创 正弦积分函数——分析傅里叶级数在间断点的行为——吉布斯现象

是连接理论与实际振荡现象的重要特殊函数。(用于吉布斯现象的计算)

2025-06-08 10:11:59 825

原创 高斯混合模型GMM

K-Means 算法对数据的分布不做任何假设。另一种基于模型的聚类方法是对分布假设一个特定的参数形状并从数据中估计参数。对聚类的适当假设是概率密度的混合。使用期望-最大化算法来获取参数的最大似然估计。p(x)=∑i=1kπi⋅p(x∣μi,Σi),(1)p(x) = \sum_{i=1}^{k} \pi_i \cdot p(x \mid \mu_i, \Sigma_i), \tag{1}p(x)=i=1∑k​πi​⋅p(x∣μi​,Σi​),(1)高斯混合模型(Gaussian Mixture Model,

2025-06-05 07:58:50 332

原创 PR基本概念——2025填空题

2025-06-04 15:41:31 535

原创 PR计算题——2025

2025-06-04 09:50:20 434

原创 Fisher准则例题——给定类内散度矩阵和类样本均值

利用 Fisher 准则求其决策面方程(假定分类阈值点为均值),并求新样本。设有两类样本,两类样本的类内散度矩阵分别为。

2025-06-02 16:34:40 1993

原创 Fisher准则例题——给定样本数据

利用Fisher线性判别方法判断新样本。(两类均值作为分类阈值点)

2025-06-02 15:51:34 1241

原创 极大似然估计例题——幂次函数的极大似然估计

由于最大似然估计只需考虑非零部分,似然函数可简化为。是相应的样本观测值,则似然函数为。

2025-06-01 07:33:27 1069

原创 极大似然估计例题——均匀分布的极大似然估计

是未知参数,取样本观测值为。对应的最大似然估计量为。,则似然函数可表示为。

2025-06-01 07:28:07 833

原创 最小二乘准则例题

摘要:本文采用最小二乘法求解两类二维样本的线性判别函数。通过对增广样本矩阵进行规范化处理,计算伪逆矩阵,并设定余量向量,最终得到权向量θ*=[-2,0,1]^T。对应的判别函数g(x)=-2x_1+1能完全正确分类所有样本:C_1类样本判别值均大于0,C_2类均小于0。结果表明该方法在该简单线性可分问题上具有良好效果。(149字)

2025-05-31 22:22:02 1094

原创 极大似然估计例题——正态分布的极大似然估计

从例可以看到,正态总体参数的最大似然估计与矩估计是相同的。是未知参数,取样本观测值为。分别求偏导,得似然方程组。的最大似然估计值分别为。取对数,得对数似然函数。最大似然估计量分别为。

2025-05-31 07:31:43 734

原创 模式识别填空题

迁移学习通过复用__________模型的参数,解决__________场景下的数据不足问题,常见策略包括__________和__________。在模式识别中,_________是指分类器正确识别的样本数占总样本数的比例,而_________是指分类器正确识别的正样本数占实际正样本数的比例。生物特征识别包括__________、__________、__________等典型应用,其本质是模式识别中的__________问题。

2025-05-31 07:14:55 894

原创 支持向量机(SVM)例题

对于图中所示的线性可分的20个样本数据,利用支持向量机进行预测分类,有三个支持向量。

2025-05-26 21:44:37 1298 1

原创 统计推断→参数估计→点估计(统计量)→最大似然估计法→估计量的评价

统计推断是通过样本推断总体的方法,核心包括参数估计和假设检验。参数估计分为点估计和区间估计:点估计用统计量估计未知参数(如灯泡平均寿命),常用矩估计和最大似然估计法;区间估计则给出参数范围。估计量评价标准有无偏性(期望等于真值)、有效性(方差更小)和一致性(样本量增大时趋近真值)。不同估计方法可能产生多个估计量,需根据这些标准选择最优。

2025-05-25 07:24:59 561

原创 主成分分析(PCA)法例题——给定样本集

使用主成分分析方法将二维数据降为一维数据。取大的特征值对应的特征向量为变换矩阵。

2025-05-25 07:00:06 459

原创 轮廓图——聚类评价指标

轮廓图上每一条线表示的是轮廓系数 (silhouette coefficient),轮廓图 (silhouette plot) 也常用来选定聚类组值。越大,聚类效果越好。类内距离越小,类间距离越大。如图 (b) 所示,组间不相似度。⚠️ 注意,当组数超过 2 时,需要在不同组之间取最小值。如图 (a) 所示,

2025-05-24 15:42:30 853

原创 极大似然估计例题——二项分布的极大似然估计

对上式两边取对数,得对数似然方程。是相应的样本值,则似然函数为。

2025-05-24 08:37:07 661

原创 极大似然估计(Maximum Likelihood Estimation, MLE)

最大似然估计又称极大似然估计,是一种利用给定样本观测值来评估模型参数的方法,其基本原理为:利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值。(2) 上述的一般步骤对含有多个未知参数的情形同样适用,只需将求导数变为求偏导数;(3) 判断并求出最大值点,用样本值代入就是参数的最大似然估计值。的所有可能取值范围(称为参数空间),则对于给定的样本观测值。的所有可能取值范围(称为参数空间),则对于给定的样本观测值。的值,使样本观测值出现的可能性最大,即使似然函数。

2025-05-23 16:28:28 1115

原创 主成分分析(PCA)法例题——给定协方差矩阵

使用PCA方法将样本向量降到二维。已知样本集合的协方差矩阵为。

2025-05-23 10:49:49 1156

原创 Simon J.D. Prince《Understanding Deep Learning》

《Understanding Deep Learning》是一本深入剖析神经网络和深度学习的书籍,其内容站位高,知识体系完整,远超其他同类书籍。与许多浅尝辄止、知识点零散的书籍不同,该书对问题进行了深度分析,避免了知识点的剥离和章节之间的孤立。对于那些盲目追随所谓“权威”的读者,该书提供了更为严谨和系统的学习路径。推荐访问其官方网站(https://udlbook.github.io/udlbook/)获取更多信息。

2025-05-21 12:20:07 360

原创 Ulisses Braga-Neto《模式识别和机器学习基础》

模式识别和机器学习基础 [专著] = Fundamentals of pattern recognition and machine learning / (美)乌利塞斯·布拉加-内托(Ulisses Braga-Neto)著;我最喜欢的就是作者有自己的见解,不管这个见解是对是错。对那种纯抄袭,抄袭一辈子的,真的是不能忍。大量阅读的目的不就是集百家之所长吗?结果一个和一个一模一样,错都错在一起,这让我怎么忍?推荐这本书,作者有自己的见解,而且提供代码。问题是难度高,对于初学者不太友好,对于我还是可以的。

2025-05-21 12:03:23 296

原创 特征值与特征向量的计算——PCA的数学基础

特征值与特征向量是线性代数中的重要概念。对于n×n矩阵A,若存在非零向量x使得Ax=λx成立,则称λ为特征值,x为对应的特征向量。特征向量在矩阵变换下仅被缩放λ倍。求特征值需解特征方程det(A-λI)=0,得到的根即为特征值。对每个特征值,解齐次方程组(A-λI)x=0可得特征向量。文中通过具体例子演示了求解过程,包括计算特征多项式、求根以及求解特征向量空间。特征值可能重复或为复数,特征向量的非零倍数仍为特征向量。

2025-05-19 18:07:52 762

原创 Srinath多元假设检验 (Multiple-hypothesis Testing)(To 廖老师)

我猜测译者应该是发现原著中错了(说明那个年代译者还纠错,现在的译者只管翻译,懂不懂都很难说,翻译完全不说人话),但是又改错了,去掉中括号就对了,利用全概率公式很容易推导出。这是很早的一本书,79年英文版,作者是1935年的,今年90了。82年中译本,那个年代的人比较弱,翻译中有些地方不说人话,好在认真,所以也能懂。但在许多情况下,源有若干个输出,我们必须判决对应于输出的几个假设中,哪一个是正确的。但是,我认为表示这样的似然比没有意义,因为多类问题需要比较所有值,两个数的比值没有意义,还增加计算量。

2025-05-19 13:06:25 2085

原创 K均值(K-Means) & 高斯混合模型(GMM)——关联:K均值是高斯混合模型的特例

K均值可以看成是高斯混合模型的特例。

2025-05-17 09:50:29 650

原创 矩阵转置的LATEX写法

表达方式LaTeX 写法显示效果正式程度常见领域^\topA^\topA⊤A^\topA⊤⭐⭐⭐⭐☆ 高数学、统计、理论学科ATAT⭐⭐⭐☆☆ 中工程、机器学习、应用类。

2025-05-16 17:43:44 650

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除