自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(382)
  • 收藏
  • 关注

原创 《数字图像处理》教材寻找合作者

现寻找能够一起讨论、切磋、打磨这一部分内容的合作者。首先要求熟悉Lim这本书第4章和第5章的内容。但这本书过于专业化,我的目标是没有信号处理那么专业,同时又不失科学性(冈萨雷斯纯属瞎说)。Rafael Gonzalez和Richard Woods所著的《数字图像处理》关于滤波器的部分几乎全错,完全从零开始写,困难重重。关于他的问题已经描述在。其他的要求:第一,教学十年以上,第二,有自己独特的见解,不迷信权威,第三,能分担基本的事务性工作。对于胜任此工作者,本书再版的时候给予三作。

2025-03-31 14:04:12 2310

原创 模式识别书稿章节安排

特征提取与选择Feature Extraction and Selection。线性判别分类器Linear Discriminant Classifiers。概率密度估计Probability Density Estimation。距离度量分类器Distance Metric Classifiers。神经网络Shallow & Deep Neural Networks。支持向量机Support Vector Machines。贝叶斯决策Bayes Decision。基本问题Fundamentals。

2025-03-17 18:48:14 486

原创 《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》第二次印刷

Rafael Gonzalez在模式识别、信号处理以及数学理论方面均高度不够。第一次重印的工作解决了原参考其著作中出现的包括随机变量相关的、估计理论相关的、模式识别相关的以及数值微分相关内容的错误或者不足。《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》已重印。下一阶段改动他在滤波器内容上的大错,预告见。目前来看,销售量不错。

2025-02-24 09:12:39 1430

原创 《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》重印变更的彩插

禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》第一次重印变更的彩插

2025-01-20 22:54:33 1514

原创 模式识别书稿思维导图

模式识别思维导图

2024-03-22 17:36:21 286

原创 禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》

本书对该章重新梳理,从全局特征和局部特征的角度描述特征提取方法,删除了不常用的链码等二值目标描述子,以及直方图矩分析法、频谱分析法等纹理描述子,增加了经典的Harris、HoG等局部特征和描述方法,以及Gabor滤波器组的纹理描述方法等。关于脉冲噪声的统计模型,Gonzalez的前两版中以噪声的概率分布描述,脉冲噪声分布律的概率之和不等于1,后两版以图像的概率分布描述,随机变量取其他值是指任何一个可能值,而不是指其他任何可能值之和,且像素值也有极小值和极大值的可能,不是只有脉冲噪声是极大值或极小值。

2024-03-21 11:50:14 3015 1

原创 禹晶、肖创柏、廖庆敏《数字图像处理》资源二维码

我们给选用教材的教师提供PPT版本的课件以及习题解答,并给予持续的教学支持。关于书中的问题,答读者问。

2024-03-21 07:30:52 463 2

原创 MATLAB Deep Learning Toolbox

Deep Learning ToolboxVersion 23.2 (R2023b) 01-Aug-2023Training for Deep LearningassembleNetwork - Assemble a neural network from pretrained layersaugmentedImageDatastore - Generate batches of augmented image dataimageDataAugmenter

2025-05-11 09:25:26 341

原创 Variants of gradient descent

文章介绍了多种优化算法,主要用于机器学习和深度学习中的参数更新。首先,小批量梯度下降算法通过从训练集中采样小批量样本计算梯度并更新参数。其次,使用动量的小批量梯度下降算法引入动量系数,利用历史梯度信息加速收敛并避免陷入局部极小点。接着,**自适应梯度法(AdaGrad)**通过累积平方梯度自适应调整学习率,适用于稀疏数据。RMSProp在AdaGrad基础上引入衰减速率,避免学习率过早下降。最后,Adam算法结合动量和自适应学习率,通过累积梯度和平方梯度,并修正偏差,进一步优化参数更新。这些算法各有特点,适

2025-05-11 09:04:07 338

原创 信息论中熵、交叉熵和KL散度间的关系

在信息论中,交叉熵和KL散度是衡量两个概率分布$p$和$q$之间差异的重要工具。交叉熵$H(p, q) = -\sum_{x} p(x) \log q(x)$表示使用分布$q$编码来自分布$p$的信息所需的平均比特数,常用于机器学习中的损失函数。KL散度$D_{\rm {KL}}(p|q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$则衡量用$q$近似$p$时增加的信息量。两者关系为$D_{\rm {KL}}(p|q) = H(p, q) - H(p)$,其中$H(p)$是

2025-05-10 10:59:16 367

原创 二分类问题sigmoid+二元交叉熵误差

二元交叉熵损失函数(Binary Cross-Entropy Loss)是二分类问题中常用的损失函数,用于衡量模型预测概率与真实标签之间的差异。它通常与Sigmoid激活函数结合使用,确保预测概率在[0, 1]之间。对于单个样本,损失函数公式为 ( L(y, \hat{y}) = -\left[ y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}) \right] ),其中 ( y ) 为真实标签,( \hat{y} ) 为预测概率。对于多个样本,总体损失为各样本损失的平均

2025-05-10 08:17:47 321

原创 多分类问题softmax传递函数+交叉熵误差

在多分类问题中,Softmax 函数通常与交叉熵损失函数结合使用。

2025-05-09 23:14:38 514

原创 MatLab提供的传递函数

help Neural Network Transfer Functions.compet - Competitive transfer function.elliotsig - Elliot sigmoid transfer function.hardlim - Positive hard limit transfer function.hardlims - Symmetric hard limit transfer function.logsig - Logarithmic sigmoid tra

2025-05-09 18:32:24 354

原创 马鞍面与鞍点

马鞍面(Saddle surface),是一种曲面,又叫双曲抛物面,形状类似于马鞍。在XOZ坐标平面上构造一条开口向上的抛物线,然后在YOZ坐标平面上构造一条开口向下的抛物线(两条抛物线的顶端是重合于一点上);然后让第一条抛物线顺着另一条抛物线上滑动,便形成了马鞍面。这导致了一个中心点(通常位于原点),该点周围的表面形状类似于一个马鞍,因此得名。这种类型的马鞍面通常被称为“双曲抛物面”,因为它结合了抛物线在两个正交方向上的特征:沿着。轴的抛物线向下开口(或相反,取决于。轴的抛物线向上开口,而沿着。

2025-05-07 19:44:31 680

原创 感知器(Perceptron)准则

梯度计算:用于确定权向量更新的方向。迭代修正公式:用于逐步调整权向量,使得错分样本的数量减少。算法步骤:通过逐个样本的修正,最终达到所有样本正确分类的目标。

2025-05-07 08:11:34 692

原创 感知器网络分类的MATLAB例

【代码】感知器网络分类的MATLAB例。

2025-05-06 19:54:34 201

原创 感知器准则&感知器神经元模型——等价

感知器神经元模型通过这种方式的误差反馈学习与感知器准则等价。感知器神经元模型的误差反馈学习。

2025-05-06 19:53:23 530

原创 《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》封面颜色空间一图的选图历程

学图像处理的都知道,彩色图像的颜色空间很多,而且又是三维,不同的角度有不同的视觉效果,MATLAB的图又有有box和没有box。选择了很久,最终定了封面上的这幅颜色空间,同门说像燕子。

2025-05-05 15:55:12 1314

原创 链式法则——反向传播算法的数学基础

多元函数的复合函数求导一般比较复杂,特别注意复合函数中哪些是自变量,哪些是中间变量。只有这样才能正确使用链式法则求出结果。为了便于记忆链式法则,可以按照各变量间的复合关系,画成树状图。对于由多个函数复合而得的复合函数,其导数公式可反复应用上式而得。画分枝,并在每个分枝旁写上对应的偏导数。的所有可能路径,以及相应的偏导数。画两个分枝,然后再分别从中间变量。注1 复合函数的求导亦称为。)的偏导数,则复合函数。的求导公式一般也写作。

2025-05-05 08:49:13 890

原创 神经网络发展历程——积跬步至千里

1−1。

2025-05-04 08:32:16 285

原创 MATLAB中tabulate函数——先验概率的简单估计

【代码】MATLAB中tabulate函数——先验概率的简单估计。

2025-05-04 08:28:22 278

原创 朴素贝叶斯分类器

朴素贝叶斯是一种基于密度估计的分类算法,它利用贝叶斯定理进行预测。该算法的核心假设是在给定类别的情况下,各个特征之间是条件独立的,尽管这一假设在现实中通常不成立,但朴素贝叶斯分类器依然能够生成对有偏类密度估计具有较强鲁棒性的后验分布,尤其是在后验概率接近决策边界(0.5)时。朴素贝叶斯分类器通过最大后验概率决策规则将观测值分配到最有可能的类别。

2025-05-03 08:48:10 561

原创 二次判别函数的决策面

二次判别函数的决策面是超二次曲面,包括超平面、超平面对、超球面、超椭球面、超抛物面、超双曲面。二次函数gx1​x2​gx1​x2​xTWxwTxw0​Ww11​w21​​w12​w22​​ww1​w2​​xx1​x2​​gx1​x2​w11​x12​w12​w21​x1​x2​w22​x22​w1​x1​w2​x。

2025-05-03 08:38:01 863

原创 对角矩阵的Latex——非对角元素上零的写法

在机器学习中,不少问题需要简化协方差矩阵是对角矩阵,否则估计的参数量太大。有的刊物上对角矩阵的写法实在看不下去🤦‍♂️。就好,写成这样完全是直观。

2025-05-02 08:40:25 221

原创 晁补之与李清照——师生佳话

在那篇著名的《词论》中,李清照点评当时诸多词坛大家,直言不讳地指摘苏轼、晏殊、欧阳修等人的不足,唯独对晁补之只字未提。晁补之强调“音律谐婉,语言圆润”,而这一点正是李清照词作的重要特征。因此可以说,晁补之不仅是她的知音,更是她在词学上的引路人。在这样的交往中,晁补之认识了年幼的李清照,并对她的才情极为欣赏。由于她的父亲李格非与晁补之不仅同出师门,还是山东老乡,并且都曾在太学任教,两人私交甚笃,常在一起谈诗饮酒,畅叙文心。然而,千古第一才女李清照终究在学习中不断超越,最终自成一家,名垂青史。

2025-05-02 07:37:31 107

原创 MATLAB 中zerophase函数——零相位响应

零相位响应(Zero-Phase Response)是指滤波器的幅度响应,但相位为零。滤波器的相位响应为零,意味着不同频率的信号通过滤波器后,其相位不发生任何变化,即信号的波形在时间轴上没有偏移。零相位响应指的是当一个系统或滤波器对输入信号进行处理时,输出信号与输入信号之间没有相位差的情况。信号的各个频率成分在通过系统后,虽然可能经历了幅度的变化(即增益的变化),但它们的相位没有被改变。

2025-05-01 16:27:19 1155

原创 《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》章节思维导图

给出《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》实质内容章节的思维导图。思维导图的优势是逻辑关系和知识点关联。今天看到了几本书的思维导图,感触颇深,如果思维导图只是章节安排,这样的思维导图有毛用。

2025-05-01 12:13:09 1239

原创 巴特沃斯滤波器用于零相位滤波器的举例——冈萨雷斯多离谱

filtfilt实现零相位滤波(Zero-phase Filtering)。它通过对信号进行正向和反向两次滤波,消除了滤波过程中的相位延迟,使得滤波后的信号保持原始相位。filtfilt的输出信号幅度会因为两次滤波而变为原滤波器幅度响应的平方,尽管它确保了信号的相位没有变化。举一个巴特沃斯滤波器用于零相位滤波器的MATLAB例子。冈萨雷斯那种对幅值采样直接用的方法,很离谱。在信号处理中,巴特沃斯滤波器用于数字滤波器时,一般是iir滤波器,这种滤波器一般会产生相移。

2025-04-26 08:17:13 381

原创 《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》图4-2

现在对连续和离散信号特别敏感了。图中第一行是连续信号的图像显示,而不是离散信号。既然是连续信号,就已经表现出频率。知识是沉淀和积累的,越来越清楚。

2025-04-26 07:55:46 139

原创 理想低通、高通、带通、带阻数字滤波器及单位脉冲响应

不同类型的数字滤波器(高通、带通、带阻)与低通滤波器之间的关系,并通过公式展示它们的脉冲响应hd​n的计算方法。

2025-04-24 09:09:56 887

原创 线性卷积&圆周卷积

利用时域卷积定理和时域圆周卷积定理等关系来推导线性卷积和圆周卷积的关系。根据时域圆周卷积定理,圆周卷积与其DFT的对应关系为。根据时域卷积定理,线性卷积与其DTFT的对应关系为。),则两个序列线性卷积结果为。线性卷积和圆周卷积的关系。

2025-04-24 08:40:55 443

原创 循环移位(圆周移位)&线性移位

圆周移位也称作“循环移位”,可以用“先周期延拓,再线性移位,最后取主值序列”来概括圆周移位。N点长序列xn的m点圆周移位是指:以N为周期对xn进行周期延拓,得到周期序列xn,将周期序列xn进行m点线性移位,然后取主值区间(n0到nN−1)上的序列值,即x((nmN​RN​n。圆周移位后得到的结果仍然是一个N点长的序列。x((nmN​表示周期序列xn的m点线性移位,m为正表示左移,m为负表示右移,即xnmx((nm。

2025-04-23 11:36:17 881

原创 循环卷积的矩阵乘法——循环卷积的边界问题

由于时域循环卷积对应频域DFT的乘积,通过矩阵乘法计算循环卷积,可以更清楚看出DFT的乘积带来的边界的问题。,由第一行开始,依次向右移动一个元素,移出去的元素又在下一行的最左边出现,即每一行都是由。将循环矩阵和线性卷积矩阵相比较,就可了解循环卷积和线性卷积的区别。矩阵的行数和列数取决于循环卷积长度,不足部分补零。称为循环矩阵,因此相对应的卷积也称为循环卷积。个元素依此法则移动所生成的,故。通常情况下,对于两个。

2025-04-23 08:38:14 640

原创 狄拉克梳状函数的傅里叶变换

此式为时域冲激串的傅里叶变换,变换的结果是频域的冲激串,即有。显然,它是周期的,周期为。这一对变换关系在信号处理中有着重要的应用。请注意,时域和频域这两个冲激串的间距。单个复指数函数的频谱的单个谱线。,将其展开成傅里叶级数,有。

2025-04-22 12:10:20 744

原创 矩形函数的逆离散时间傅里叶变换(IDTFT)

这实际上是计算矩形函数的逆离散时间傅里叶变换(IDTFT)。从频域到时域的转换。零相位的理想低通FIR数字滤波器频率响应为。考虑理想低通数字滤波器,其频率特性为。,计算该滤波器的单位抽样响应。为对称的 sinc 函数,

2025-04-22 11:50:14 797

原创 信号的频谱

都是作DTFT,但是不同的概念体系,信号处理就是这样完备。冈萨雷斯连这个都分不清。与连续时间信号与系统的频域分析一样,离散时间信号的傅里叶变换。是离散时间信号的频域分析,表示的是离散时间信号的频谱。表示成模和相位的形式。的连续函数,而且是以。

2025-04-21 08:55:55 596

原创 引入幅值分贝到数字图像处理

贝尔(B)是“声强级”的单位,即把相对于基准声强的比值按照对数划分的等级。上面这两种定义其实是等价的:dB 定义前取 10,表明参与相比的两个物理量暗含了平方关系,比如功率暗含了电流平方或者电压平方的关系;这样分贝曲线很容易观察旁瓣的衰减,虽然这种图在信号处理中很常见,但是没有出现在数字图像处理中,我准备引入,刚开始看不习惯,看得多了习惯了。“最著名”的 dB 值就是 0dB 和 3dB,0dB 表示功率相同,3dB 表示半功率。有意思的是,1dB 正好是人耳的听觉门限,也是标准电话线上 1km 的衰减。

2025-04-21 08:33:26 1706

原创 平均滤波器&高斯滤波器——对zoneplate图像的响应及二维零相位响应

平均滤波器&高斯滤波器响应的区别一目了然、显而易见。

2025-04-20 08:29:47 218

原创 平均滤波器&高斯滤波器——对阶跃信号的响应及频率响应

平均滤波器对阶跃信号的响应,进出斜面一阶导数不连续。平均滤波器的频率响应有旁瓣泄露。

2025-04-20 08:19:46 190

原创 时域采样定理的命名

采样定理有时称为“**奈奎斯特采样定理**”,有时又称作“**香农采样定理**”。之前廖老师和我杠过,我提到香农采样定理,他说这是奈奎斯特采样定理。不同学科的约定俗成,在“信号与系统”“数字信号处理”等信号类课程中,一般称为“奈奎斯特采样定理”,在“通信原理”“信息论与编码”等通信类课程中,更习惯称为“香农采样定理”。我首次接触这个定理是在“信息论”,先入为主。看来廖老师是信号类课程吧。

2025-04-19 15:00:08 778

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除