代码随想录算法训练营第四十六天 | 力扣 139.单词拆分

本文详细介绍了如何运用动态规划解决力扣139.单词拆分的问题,通过解析、递推公式和Java代码实现,阐述了完全背包问题的思路,并总结了背包问题的不同类型和遍历顺序。
摘要由CSDN通过智能技术生成

139.单词拆分

题目

139. 单词拆分

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。

注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

解析

1.确定dp数组以及下标的含义

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词

2.确定递推公式

如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

3.dp数组如何初始化

从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。

那么dp[0]有没有意义呢?

dp[0]表示如果字符串为空的话,说明出现在字典里。

但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。

下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。

4.确定遍历顺序

题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。

本题其实我们求的是排列数

所以说,本题一定是 先遍历 背包,再遍历物品。

5.举例推导dp[i] 

以输入: s = "leetcode", wordDict = ["leet", "code"]为例,dp状态如图:

Java代码实现

public boolean wordBreak(String s, List<String> wordDict) {
    HashSet<String> set = new HashSet<>(wordDict);
    boolean[] valid = new boolean[s.length() + 1];
    valid[0] = true;
    for (int i = 1; i <= s.length(); i++) {
        for (int j = 0; j < i && !valid[i]; j++) {
            if (set.contains(s.substring(j, i)) && valid[j]) {
                valid[i] = true;
            }
        }
    }
    return valid[s.length()];
}

多重背包

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

public void testMultiBagProblem1() {
    // 版本一:改变物品数量为01背包格式
    List<Integer> weight = new ArrayList<>(Arrays.asList(1, 3, 4));
    List<Integer> value = new ArrayList<>(Arrays.asList(15, 20, 30));
    List<Integer> nums = new ArrayList<>(Arrays.asList(2, 3, 2));
    int bagWeight = 10;

    for (int i = 0; i < nums.size(); i++) {
        while (nums.get(i) > 1) {
            weight.add(weight.get(i));
            value.add(value.get(i));
            nums.set(i, nums.get(i));
        }
    }
    int[] dp = new int[bagWeight + 1];

    for (int i = 0; i < nums.size(); i++) {
        for (int j = bagWeight; j >= weight.get(i); j--) {
            dp[j] = Math.max(dp[j], dp[j - weight.get(i)] + value.get(i));
        }
        System.out.println(Arrays.toString(dp));
    }
}

另一种实现方式,就是把每种商品遍历的个数放在01背包里面在遍历一遍。

public void testMultiBagProblem2() {
    // 版本二:改变遍历个数
    int[] weight = new int[]{1, 3, 4};
    int[] value = new int[]{15, 20, 30};
    int[] nums = new int[]{2, 3, 2};
    int bagWeight = 10;
    int[] dp = new int[bagWeight + 1];
    for (int i = 0; i < weight.length; i++) {
        for (int j = bagWeight; j >= weight[i]; j--) {
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) {
                dp[j] = Math.max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
            System.out.println(Arrays.toString(dp));
        }
    }
}

背包问题总结(代码随想录)

五步法

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

背包递推公式

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

遍历顺序

01背包

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

完全背包

完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值