欧拉筛筛积性函数

Part. 1 Preface

这个东西是我在做 JZPTAB 的时候 LYC 给我讲的。

然后发现这是个通法,就写一写,顺便希望能够解决垃圾百度一搜相关文章全部都是 线性筛+没有用的已知函数筛的情况。

当然可以去博客园看,用 csdn 发表仅仅是因为这个网站百度搜索的优先级较高:博客园版

本文除了例题所有代码均未经过编译,仅作为参考

Part. 2 Untitled(怎么取标题呀)(哦 正文)

Part. 2-1 Worse ver.

对于一个积性函数 f ( n ) f(n) f(n),如果我们已知 f ( 1 ) , f ( p ) , f ( p k ) f(1),f(p),f(p^{k}) f(1),f(p),f(pk) p p p 是一个素数)并且可以在 O ( log ⁡ 2 ( n ) ) O(\log_{2}(n)) O(log2(n)) 的时间内算出来的话,我们就可以在 O ( n log ⁡ 2 ( n ) ) O(n\log_{2}(n)) O(nlog2(n)) 的时间内利用 Euler 筛筛出 f ( 1 ⋯ n ) f(1\cdots n) f(1n) 的值。

举个例子,假设
f ( n ) = ∑ d ∣ n d × φ ( ⌊ n d ⌋ ) f(n)=\sum_{d|n}d\times\varphi(\lfloor\frac{n}{d}\rfloor) f(n)=dnd×φ(dn)
由于 id \text{id} id φ \varphi φ 卷不出个什么现成的函数,所以我们得考虑自己把它筛出来。

带个 p p p 进去可知
{ f ( 1 ) = 1 f ( p ) = 2 × p − 1 f ( p k ) = ( k + 1 ) × p k − k × p k − 1 \begin{cases} f(1)=1 \\ \displaystyle f(p)=2\times p-1 \\ \displaystyle f(p^{k})=(k+1)\times p^{k}-k\times p^{k-1} \end{cases} f(1)=1f(p)=2×p1f(pk)=(k+1)×pkk×pk1
以下内容请参考 Euler 筛代码来看:

void sieve ( const int x ) {
	tag[1] = 1, f[1] = /* DO SOMETHING 1 */;
	for ( int i = 2; i <= x; ++ i ) {
		if ( ! tag[i] ) {
			pSet[++ psc] = i;
			f[i] = /* DO SOMETHING 2 */;
		}
		for ( int j = 1; j <= psc && pSet[j] * i <= x; ++ j ) {
			tag[pSet[j] * i] = 1;
			if ( ! ( i % pSet[j] ) ) {
				f[pSet[j] * i] = /* DO SOMETHING 3 */;
				break;
			}
			else	f[pSet[j] * i] = /* DO SOMETHING */;
		}
	}
}

函数 sieve \text{sieve} sieve 就是 Euler 筛的过程。我在代码中留了四个空,分别来看我们需要做什么。

  • 第一个空很显然,把 f ( 1 ) f(1) f(1) 赋给 f[1] 即可。

  • 第二个空也很显,把 f ( p ) f(p) f(p) 付给 f[i]

  • 我们重点来看第三个空。

首先因为此时的 i , pSet j i,\text{pSet}_{j} i,pSetj 不互质,所以不能直接照完全积性函数筛。

首先,我们需要把 i × pSet j i\times\text{pSet}_{j} i×pSetj pSet j \text{pSet}_{j} pSetj 因子全部除掉,除完后的结果记为 tmp \text{tmp} tmp pSet j \text{pSet}_{j} pSetj 因子数量记为 power \text{power} power,即 i × pSet j = pSet j power × c i\times\text{pSet}_{j}=\text{pSet}_{j}^{\text{power}}\times c i×pSetj=pSetjpower×c

就是类似下面代码做的事情

int tmp = i / pSet[j], power = 2;
while ( ! ( i % pSet[j] ) )	i /= pSet[j], ++ power;

然后对 tmp \text{tmp} tmp 进行分类讨论:

    • tmp = 1 \text{tmp}=1 tmp=1:此时 i × pSet j i\times\text{pSet}_{j} i×pSetj pSet j \text{pSet}_{j} pSetj power \text{power} power 次方,把 f ( p k ) f(p^{k}) f(pk) 赋给 f[pSet[j] * i] 即可。
    • tmp > 1 \text{tmp}>1 tmp>1:此时 tmp \text{tmp} tmp i × pSet j tmp \frac{i\times\text{pSet}_{j}}{\text{tmp}} tmpi×pSetj 互质,于是照积性函数 f[pSet[j] * i] = f[pSet[j] * i / tmp] * f[tmp]

于是第三个空做完了。

  • 第四个空中 pSet j \text{pSet}_{j} pSetj i i i 互质,于是照积性函数 f[pSet[j] * i] = f[pSet[j]] * f[i]

于是我们得到了完整代码

void sieve ( const int x ) {
	tag[1] = 1, f[1] = 1;
	for ( int i = 2; i <= x; ++ i ) {
		if ( ! tag[i] ) {
			pSet[++ psc] = i;
			f[i] = 2 * i - 1;
		}
		for ( int j = 1; j <= psc && pSet[j] * i <= x; ++ j ) {
			tag[pSet[j] * i] = 1;
			if ( ! ( i % pSet[j] ) ) {
				int tmp = i / pSet[j], power = 2;
				while ( ! ( i % pSet[j] ) )	i /= pSet[j], ++ power;
				if ( tmp == 1 )	f[pSet[j] * i] = ( power + 1 ) * cqpow ( pSet[j], power ) - power * cqpow ( pSet[j], power - 1 );
				else	f[pSet[j] * i] = f[pSet[j] * i / tmp] * f[tmp];
				break;
			}
			else	f[pSet[j] * i] = f[pSet[j]] * f[i];
		}
	}
}

Part. 2-2 Better ver.

上述的方法的缺点显而易见:复杂度多出来个 log ⁡ 2 \log_{2} log2

更好的方法是记录最小质因子,具体见 ljs 博客 Link

Part. 3 Example

LOCAL 64388 - GCD SUM

∑ i = 1 n ∑ j = 1 m gcd ( i , j ) \sum_{i=1}^n\sum_{j=1}^m\textrm{gcd}(i,j) i=1nj=1mgcd(i,j)

共有 T T T 组询问

KaTeX parse error: Expected '}', got '_' at position 11: \text{task_̲id}测试点数 n , m ≤ n,m\leq n,m T ≤ T\leq T特殊性质
1 1 11 10 10 10 1 0 3 10^3 103
2 2 22 1 0 3 10^3 103 10 10 10
3 3 33 1 0 3 10^3 103 1 0 4 10^4 104
4 4 44 1 0 6 10^6 106 10 10 10 n = m n = m n=m
5 5 55 1 0 6 10^6 106 1 0 4 10^4 104 n = m n = m n=m
6 6 62 1 0 6 10^6 106 1 0 5 10^5 105 n = m n = m n=m
7 7 73 1 0 7 10^7 107 1 0 6 10^6 106 n = m n = m n=m
8 8 82 1 0 6 10^6 106 10 10 10
9 9 93 1 0 6 10^6 106 1 0 4 10^4 104

放个 task 7 以外的部分分的推导
∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) = ∑ d = 1 min ⁡ { n , m } d ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = d ] = ∑ d = 1 min ⁡ { n , m } d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ⁡ ( i , j ) = 1 ] = ∑ d = 1 min ⁡ { n , m } d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ∑ k ∣ i , k ∣ j μ ( k ) = ∑ d = 1 min ⁡ { n , m } d ∑ k ∣ ( ⌊ n d ⌋ ) , k ∣ ( ⌊ m d ⌋ ) μ ( k ) ( ⌊ n d × k ⌋ ) ( ⌊ m d × k ⌋ ) = ∑ d = 1 min ⁡ { n , m } d ∑ k ∣ ( ⌊ n d ⌋ ) , k ∣ ( ⌊ m d ⌋ ) μ ( k ) ( ⌊ n d × k ⌋ ) ( ⌊ m d × k ⌋ ) = ∑ T = 1 min ⁡ { n , m } ∑ d ∣ T d × μ ( ⌊ T d ⌋ ) × ( ⌊ n T ⌋ ) × ( ⌊ m T ⌋ ) = ∑ T = 1 min ⁡ { n , m } ( ⌊ n T ⌋ ) × ( ⌊ m T ⌋ ) × ∑ d ∣ T d × μ ( ⌊ T d ⌋ ) = ∑ T = 1 n ( ⌊ n T ⌋ ) 2 × φ ( T ) \sum_{i=1}^{n}\sum_{j=1}^{m}\gcd(i,j) \\ \begin{aligned} &=\sum_{d=1}^{\min\{n,m\}}d\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=d] \\ &=\sum_{d=1}^{\min\{n,m\}}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1] \\ &=\sum_{d=1}^{\min\{n,m\}}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{k|i,k|j}\mu(k) \\ &=\sum_{d=1}^{\min\{n,m\}}d\sum_{k|(\lfloor\frac{n}{d}\rfloor),k|(\lfloor\frac{m}{d}\rfloor)}\mu(k)(\lfloor\frac{n}{d\times k}\rfloor)(\lfloor\frac{m}{d\times k}\rfloor) \\ &=\sum_{d=1}^{\min\{n,m\}}d\sum_{k|(\lfloor\frac{n}{d}\rfloor),k|(\lfloor\frac{m}{d}\rfloor)}\mu(k)(\lfloor\frac{n}{d\times k}\rfloor)(\lfloor\frac{m}{d\times k}\rfloor) \\ &=\sum_{T=1}^{\min\{n,m\}}\sum_{d|T}d\times\mu(\lfloor\frac{T}{d}\rfloor)\times(\lfloor\frac{n}{T}\rfloor)\times(\lfloor\frac{m}{T}\rfloor) \\ &=\sum_{T=1}^{\min\{n,m\}}(\lfloor\frac{n}{T}\rfloor)\times(\lfloor\frac{m}{T}\rfloor)\times\sum_{d|T}d\times\mu(\lfloor\frac{T}{d}\rfloor) \\ &=\sum_{T=1}^{n}(\lfloor\frac{n}{T}\rfloor)^{2}\times\varphi(T) \\ \end{aligned} i=1nj=1mgcd(i,j)=d=1min{n,m}di=1nj=1m[gcd(i,j)=d]=d=1min{n,m}di=1dnj=1dm[gcd(i,j)=1]=d=1min{n,m}di=1dnj=1dmki,kjμ(k)=d=1min{n,m}dk(dn),k(dm)μ(k)(d×kn)(d×km)=d=1min{n,m}dk(dn),k(dm)μ(k)(d×kn)(d×km)=T=1min{n,m}dTd×μ(dT)×(Tn)×(Tm)=T=1min{n,m}(Tn)×(Tm)×dTd×μ(dT)=T=1n(Tn)2×φ(T)
对于 task 7, n = m n=m n=m 让我们很方便地直接少了一个变量,然后就继续推
∑ i = 1 n ∑ j = 1 n gcd ⁡ ( i , j ) = ( 2 ∑ i = 1 n ∑ j = 1 i gcd ⁡ ( i , j ) ) − n ( n + 1 ) 2 = ( 2 ∑ i = 1 n ∑ d ∣ i d × ∑ j = 1 i [ gcd ⁡ ( i , j ) = d ] ) − n ( n + 1 ) 2 = ( 2 ∑ i = 1 n ∑ d ∣ i d × ∑ j = 1 ⌊ i d ⌋ [ gcd ⁡ ( ⌊ i d ⌋ , j ) = 1 ] ) − n ( n + 1 ) 2 = ( 2 ∑ i = 1 n ∑ d ∣ i d × φ ( ⌊ i d ⌋ ) ) − n ( n + 1 ) 2 \sum_{i=1}^{n}\sum_{j=1}^{n}\gcd(i,j) \\ \begin{aligned} &=\left(2\sum_{i=1}^{n}\sum_{j=1}^{i}\gcd(i,j)\right)-\frac{n(n+1)}{2} \\ &=\left(2\sum_{i=1}^{n}\sum_{d|i}d\times\sum_{j=1}^{i}[\gcd(i,j)=d]\right)-\frac{n(n+1)}{2} \\ &=\left(2\sum_{i=1}^{n}\sum_{d|i}d\times\sum_{j=1}^{\lfloor\frac{i}{d}\rfloor}[\gcd(\lfloor\frac{i}{d}\rfloor,j)=1]\right)-\frac{n(n+1)}{2} \\ &=\left(2\sum_{i=1}^{n}\sum_{d|i}d\times\varphi(\lfloor\frac{i}{d}\rfloor)\right)-\frac{n(n+1)}{2} \\ \end{aligned} i=1nj=1ngcd(i,j)=(2i=1nj=1igcd(i,j))2n(n+1)=2i=1ndid×j=1i[gcd(i,j)=d]2n(n+1)=2i=1ndid×j=1di[gcd(di,j)=1]2n(n+1)=2i=1ndid×φ(di)2n(n+1)
然后
let  f ( n ) = ∑ d ∣ n d × φ ( ⌊ n d ⌋ ) \text{let }f(n)=\sum_{d|n}d\times\varphi(\lfloor\frac{n}{d}\rfloor) let f(n)=dnd×φ(dn)
后面的就是前面举的例子了,略。

/*
\large\text{For 1e6 part} \\
\sum_{i=1}^{n}\sum_{j=1}^{m}\gcd(i,j) \\
\sum_{d=1}^{\min(n,m)}d\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=d] \\
\sum_{d=1}^{\min(n,m)}d\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[\gcd(i,j)=1] \\
\sum_{d=1}^{\min(n,m)}d\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}\sum_{k|i,k|j}\mu(k) \\
\sum_{d=1}^{\min(n,m)}d\sum_{k|(n/d),k|(m/d)}\mu(k)(n/(dk))(m/(dk)) \\
\sum_{d=1}^{\min(n,m)}d\sum_{k|(n/d),k|(m/d)}\mu(k)(n/(dk))(m/(dk)) \\
\sum_{T=1}^{\min(n,m)}\sum_{d|T}d\times\mu(T/d)\times(n/T)\times(m/T) \\
\sum_{T=1}^{\min(n,m)}(n/T)\times(m/T)\times\sum_{d|T}d\times\mu(T/d) \\
\sum_{T=1}^{n}(n/T)^{2}\times\varphi(T) \\
\text{precalculate the last part} \\
\large\text{For 1e7 part} \\
n=m \\
\left(2\sum_{i=1}^{n}\sum_{j=1}^{i}\gcd(i,j)\right)-\frac{n(n+1)}{2} \\
\left(2\sum_{i=1}^{n}\sum_{d|i}d\times\sum_{j=1}^{i}[\gcd(i,j)=d]\right)-\frac{n(n+1)}{2} \\
\left(2\sum_{i=1}^{n}\sum_{d|i}d\times\sum_{j=1}^{i/d}[\gcd(i/d,j)=1]\right)-\frac{n(n+1)}{2} \\
\left(2\sum_{i=1}^{n}\sum_{d|i}d\times\varphi(i/d)\right)-\frac{n(n+1)}{2} \\
f(i)=\sum_{d|i}d\times\varphi(i/d) \\
\text{f(i) is able to be sieved;} \\
f(1)=1,f(p)=p-1+p=2\times p-1,f(p^{k})=(k+1)\times p^{k}-k\times p^{k-1}
*/
#include<cstdio>
#include<algorithm>
using namespace std;
int id,t,n,m,tag[10000010],prime[10000010],cnt;
long long f[10000010],phi[10000010];
long long cqpow(long long bas,int fur)
{
	long long res=1;
	while(fur)
	{
		if(fur&1)	res*=bas;
		bas*=bas;
		fur>>=1;
	}
	return res;
}
void search(int x)
{
	tag[1]=phi[1]=1;
	for(int i=2;i<=x;++i)
	{
		if(!tag[i])
		{
			prime[++cnt]=i;
			phi[i]=i-1;
		}
		for(int j=1;j<=cnt&&(long long)prime[j]*i<=x;++j)
		{
			tag[prime[j]*i]=1;
			if(i%prime[j]==0)
			{
				phi[prime[j]*i]=phi[i]*prime[j];
				break;
			}
			else	phi[prime[j]*i]=phi[i]*(prime[j]-1);
		}
	}
	for(int i=1;i<=x;++i)	phi[i]+=phi[i-1];
}
long long calc(int x,int y)
{
	long long res=0;
	int lim=min(x,y);
	for(int l=1,r;l<=lim;l=r+1)
	{
		r=min(x/(x/l),y/(y/l));
		res+=(long long)(n/l)*(m/l)*(phi[r]-phi[l-1]);
	}
	return res;
}
void exsearch(int x)
{
	tag[1]=f[1]=1;
	for(int i=2;i<=x;++i)
	{
		if(!tag[i])
		{
			prime[++cnt]=i;
			f[i]=(i<<1)-1;
		}
		for(int j=1;j<=cnt&&(long long)prime[j]*i<=x;++j)
		{
			tag[prime[j]*i]=1;
			if(i%prime[j]==0)
			{
				int tmp=i/prime[j],power=2;
				while(tmp%prime[j]==0)
				{
					tmp/=prime[j];
					power++;
				}
				if(tmp==1)	f[prime[j]*i]=(power+1)*cqpow(prime[j],power)-power*cqpow(prime[j],power-1);
				else	f[prime[j]*i]=f[prime[j]*i/tmp]*f[tmp];
				break;
			}
			else	f[prime[j]*i]=f[prime[j]]*f[i];
		}
	}
	for(int i=1;i<=x;++i)	f[i]+=f[i-1];
}
long long excalc(long long x)
{
	return (f[x]<<1)-((x*(x+1))>>1);
}
int main()
{
	scanf("%d%d",&id,&t);
	if(id^7)
	{
		search(1000000);
		while(t--)
		{
			scanf("%d%d",&n,&m);
			printf("%lld\n",calc(n,m));
		}
	}
	else
	{
		exsearch(10000000);
		while(t--)
		{
			scanf("%d%d",&n,&m);
			printf("%lld\n",excalc(n));
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值