我曾在极度愤怒的情况下爆零

Lagrange Inversion Formula

P r o o f : Proof: Proof: https://users.math.msu.edu/users/magyarp/Math880/Lagrange.pdf

**Generalization: ** For inverse functions with g ( f ( x ) ) = x g(f(x)) = x g(f(x))=x,we can use the same reasoninng to expand h ( g ( x ) ) h(g(x)) h(g(x)) for any h ( x ) h(x) h(x) with h ( 0 ) = 0 : h(0) =0: h(0)=0:
[ x n ] h ( g ( x ) ) = 1 n [ x − 1 ] h ′ ( x ) f ( x ) n [x^n]h(g(x))=\frac{1}{n}[x^{-1}]\frac{h^{'}(x)}{f(x)^n} [xn]h(g(x))=n1[x1]f(x)nh(x)
Eulerian Number

https://blog.csdn.net/weixin_42426064/article/details/108720990

O r z O r z O r z O r z ∣ n k ∣ = ∑ i = k n ( i k ) ⟨ n i ⟩ ⇒ ⟨ n k ⟩ = ∑ i = k n ( i k ) ( − 1 ) i − k ∣ n i ∣ ∵ ∣ n k ∣ = n ! [ x n ] ( e x − 1 ) n − k ( E G F ) ∴ ⟨ n k ⟩ = n ! ∑ i = k n ( i k ) ( − 1 ) i − k [ x n ] ( e x − 1 ) n − i OrzOrzOrzOrz \\ \left|\begin{matrix}n\\k\end{matrix}\right| =\sum_{i=k}^n \binom{i} {k}\left\langle\begin{matrix}n\\i\end{matrix}\right\rangle \Rightarrow \left\langle\begin{matrix}n\\k\end{matrix}\right\rangle=\sum_{i=k}^n \binom{i}{k}(-1)^{i-k}\left|\begin{matrix}n\\i\end{matrix}\right| \\ \begin{aligned} \because \left|\begin{matrix}n\\k\end{matrix}\right| =& n![x^n](e^x-1)^{n-k} \quad \quad (EGF)\\ \therefore \left\langle\begin{matrix}n\\k\end{matrix}\right\rangle =& n!\sum_{i=k}^n \binom{i}{k}(-1)^{i-k}[x^n](e^x-1)^{n-i} \end{aligned} \\ OrzOrzOrzOrznk=i=kn(ki)nink=i=kn(ki)(1)iknink=nk=n![xn](ex1)nk(EGF)n!i=kn(ki)(1)ik[xn](ex1)ni
那么每位的贡献为
% % % % % % % A n s [ k ] = ∑ i = k n ( n i ) ( n − i ) ! i ! ∑ j = k i ( j k ) ( − 1 ) j − k [ x i ] ( e x − 1 ) i − j = n ! ∑ i = k n ∑ j = k i ( j k ) ( − 1 ) j − k [ x i ] ( e x − 1 ) i − j = n ! k ! ∑ j = k n ( − 1 ) j − k j ! ( j − k ) ! ∑ i = j n [ x i ] ( e x − 1 ) i − j S [ k ] = ∑ i = k n [ x i ] ( e x − 1 ) i − k = n ! k ! ∑ j = k n ( − 1 ) j − k ( j − k ) ! S [ j ] j ! \%\%\%\%\%\%\% \\ \begin{aligned} Ans[k] =& \sum_{i=k}^n \binom{n}{i}(n-i)!i!\sum_{j=k}^i \binom{j}{k}(-1)^{j-k}[x^i](e^x-1)^{i-j} \\ =& n!\sum_{i=k}^n\sum_{j=k}^i\binom{j}{k}(-1)^{j-k}[x^i](e^x-1)^{i-j} \\ =& \frac{n!}{k!}\sum_{j=k}^n \frac{(-1)^{j-k}j!}{(j-k)!}\sum_{i=j}^n[x^i](e^x-1)^{i-j} \end{aligned} \\ \begin{aligned} S[k] =& \sum_{i=k}^n[x^i](e^x-1)^{i-k} \\ =& \frac{n!}{k!}\sum_{j=k}^n\frac{(-1)^{j-k}}{(j-k)!}S[j]j! \end{aligned} %%%%%%%Ans[k]===i=kn(in)(ni)!i!j=ki(kj)(1)jk[xi](ex1)ijn!i=knj=ki(kj)(1)jk[xi](ex1)ijk!n!j=kn(jk)!(1)jkj!i=jn[xi](ex1)ijS[k]==i=kn[xi](ex1)ikk!n!j=kn(jk)!(1)jkS[j]j!
https://www.cnblogs.com/s-z-q/p/13347914.html

S [ k ] S[k] S[k]差卷积,二元GF操作后可得(还不太会,前面的过程也只是看了聚聚才弄出来,留个结果咕了)
[ x n − m + 1 ] m H ( x ) n + 1 1 − H ( x ) + [ x n − m ] H ′ ( x ) H ( x ) n + 1 ( 1 − H ( x ) ) 2 H ( x ) = x l n ( x + 1 ) [x^{n-m+1}]m\frac{H(x)^{n+1}}{1-H(x)}+[x^{n-m}]\frac{H^{'}(x)H(x)^{n+1}}{(1-H(x))^2} \\ H(x)=\frac{x}{ln(x+1)} [xnm+1]m1H(x)H(x)n+1+[xnm](1H(x))2H(x)H(x)n+1H(x)=ln(x+1)x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值