解决 GPTQ 模型导入后推理生成 Tokens 速度很慢的问题(从源码重新安装 Auto-GPTQ)

这里解决的是使用 Auto-GPTQ 或者 Transformers 导入 GPTQ 模型后推理速度很慢的问题。

值得注意的是,这个问题很有可能是因为安装不正确,所以 GPTQ 无法正确使用 GPU 进行推理,也就是说无法进行加速,即便 print(model.device) 显示为 “cuda”。类似的问题见 Is This Inference Speed Slow? #130/ CUDA extension not installed #694

这个问题是普遍存在的,当你直接使用 pip install auto-gptq 进行安装时,可能就会出现。

你可以通过以下命令检查已安装的版本:

pip list | grep auto-gptq

如果发现之前安装的版本不带 cuda 标识,卸载它,从源码重新进行安装(推理速度将提升为原来的 15 倍以上)。

如果存在 cuda 标识,那么应该去检查代码的参数是否正确。

pip uninstall auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
# 以下两种方式任选一种进行安装,经测试均有效
pip install -vvv --no-build-isolation -e .
# >> Successfully installed auto-gptq-0.8.0.dev0+cu121

python setup.py install
# >> Finished processing dependencies for auto-gptq==0.8.0.dev0+cu121
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hoper.J

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值