给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
/*没有主函数,主函数需要自己加,注意判断输入时是否为空*/
//方法很简单,首先遍历两个有序数组,将两个有序数组合并为一个有序数组
//声明两个指针变量 i 和 j ,让这两个指针分别指向两个数组的开头
//比较两个数组 i 和 j 处的值,那个小就把那个装到新的数组中
//将两个数组合并后寻找中位数,注意,数组有奇数个和偶数个之分。
public class Solution {
public double FindMedianSortedArrays(int[] nums1, int[] nums2) {
double result = 0.0;
int[] num = new int[nums1.Length + nums2.Length];
if (nums1.Length + nums2.Length == 1)//判断两个数组是否一共只有一个值
{
if (nums1.Length == 0)
{
result = nums2[0];
}
else
{
result = nums1[0];
}
}
else
{
int i = 0; //指针变量
int j = 0; //指针变量
int p = 0;
while (p < nums1.Length + nums2.Length)
{
while (j != nums2.Length && i < nums1.Length && nums1[i] <= nums2[j] ) //判断num1[i]和num2[j]哪个值较小,注意判断条件的顺序不能变,否则会发生数组越界
{
num[p] = nums1[i];
p++;
i++;
}
while (i != nums1.Length && j < nums2.Length && nums2[j] < nums1[i] )//判断num1[i]和num2[j]哪个值较小,注意判断条件的顺序不能变,否则会发生数组越界
{
num[p] = nums2[j];
p++;
j++;
}
if (i == nums1.Length)
{
for(int t = j; t < nums2.Length; t++)
{
num[p++] = nums2[t];
}
}
if (j == nums2.Length)
{
for (int t = i; t < nums1.Length; t++)
{
num[p++] = nums1[t];
}
}
if (num.Length % 2 == 0)//当数组长度是偶数时
{
int x = 0;
int y = num.Length - 1;
while (x + 1 != y)
{
x++;
y--;
}
result = (double)(num[x] + num[y]) / 2;
}
if (num.Length % 2 != 0)//当数组长度是奇数时
{
int x = 0;
int y = num.Length - 1;
while (x + 1 != y - 1)
{
x++;
y--;
}
result = num[x+1];
}
}
}
return result;
}
}