一、基本原理:
正弦条纹打在三维物体上,CCD记录到的条纹由于受到三维物体高度的调制而发生扭曲,扭曲的条纹(deformed fringe)实质上为原始条纹在物体具有高度存在的位置有了附加相位,各点的相位表现为由CCD图像采集获得的被调制的条纹数字图像的灰度值。通过扭曲的条纹和原始条纹比对计算得出相位变化值。又已知投影仪、CCD和物体的具体位置和之间的距离,利用数学关系可求出对应点的高度值,实现3D重建。公式推导如下:(下图来自[1])
二、四步相移法
获得正确的相位值并计算出相位差是得到物体真实高度信息并进行3D重建的关键。
在利用CCD进行数字采集过程中,由于环境等各种因素的影响,以及物体在空间上对光的反射程度和与CCD距离不同,不能够得到理想的均匀而又高对比度的条纹,也就不能得到最真实的相位信息。运用四步相移法处理此问题(此方法参考[1]),过程分析如下:
式中 R(x,y) 表示所测物体表面的不均匀反射率,A(x,y) 是背景强度,B(x,y)/A(x,y) 表示的是光栅条纹的对比度。∅(x,y) 是相位值。
考虑到以上引入的多个外部影响因子,利用四步相移法分别记录四次初相不同的正弦条纹和被调制的条纹(每个相差π/2),联立即可得到消去外部因子的真实相位值。表达式如下:
分别为初相等于0、π/2、π 和 3π/2 的条纹表达式,由三角函数变换可分别化成上式。
联立解得
可以看到A、B、R三个外部因子被消去,留下相位的正切值。利用反正切函数即可求出相位分布。
三、包裹相位处理(相位展开/相位解卷)
1、 相位包裹的含义:
如图所示(图片来自[1]),下图为真实相位值,上图为被包裹的相位。即不在反正切函数(-π,π)的主值区间内的相位值被加上或减去n个2π(n为整数),使其值被调整了主值区间(-π,π)内,称为相位包裹。被包裹的相位(wrapped phase)并不是真正的相位信息,需要进行相位展开,还原出其原始的相位值。
此处有另一个重点,数学中常用的反正切函数是二象限的反正切函数,值域仅是(-π/2,π/2),而此处我们运用的反正切函数是四象限的反正切函数,值域是(-π,π)。区别如下:
二象限反正切函数(matlab中函数名为atan)输入参数为正切值,返回正切值仅有两个第一第四两个象限的角度值,即(-π/2,