华为OD机试2024年E卷-贪心的商人[100分]( Java | Python3 | C++ | C语言 | JsNode | Go)实现100%通过率

245 篇文章 147 订阅 ¥59.90 ¥99.00

题目描述

商人经营一家店铺,有number种商品,
由于仓库限制每件商品的最大持有数量是item[index]
每种商品的价格是item-price[item_index][day]
通过对商品的买进和卖出获取利润
请给出商人在days天内能获取的最大的利润
注:同一件商品可以反复买进和卖出

输入描述

3 第一行输入商品的数量number
3 第二行输入商品售货天数 days
4 5 6 第三行输入仓库限制每件商品的最大持有数量是item[index]
1 2 3 第一件商品每天的价格
4 3 2 第二件商品每天的价格
1 5 3 第三件商品每天的价格

输出描述

输出商人在这段时间内的最大利润
例如:32

示例1

输入

3
3
4 5 6
1 2 3
4 3 2
1 5 2

输出

32

说明

示例2

输入

题目描述 给定一个无向图,把图的结点成两组,要求相同组内的结点之间没有连边,求这样组的可能方案数。 输入格式 第一行一个整数 n,表示图的结点数。 接下来有 n 行,其中第 i 行的第 j 个整数表示结点 i 和结点 j 之间是否有连边。 输出格式 输出一个整数,为方案数。 输入样例 4 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 输出样例 10 解题思路 本题解法很多,以下介绍两种较常见的做法。 做法一:二图染色 将整个无向图按照二图划为两部,其中每一部内的节点都没有互相连通的边。即,将图中的每个节点为两组,使得每组内没有连边,此时的组情况可以确定,方案数为 2^(n/2)。这里可以使用 DFS 或 BFS 实现,需要注意以下两个细节: - 图不一定联通,因此需要对所有的节点进行遍历; - 一个无向图不一定是二图,因此需要处理在原图中连通的节点被划在同一组的情形。 代码如下: Java版: import java.util.*; public class Main { static int n; static int[][] w; static int[] color; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); w = new int[n][n]; color = new int[n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) w[i][j] = sc.nextInt(); dfs(0, 1); int ans = 1; for (int c : color) { if (c == 0) ans *= 2; } System.out.println(ans); } static void dfs(int u, int c) { color[u] = c; for (int v = 0; v < n; v++) { if (w[u][v] == 0) continue; if (color[v] == 0) { dfs(v, 3 - c); // 如果是颜色1,则下一次染成颜色2;如果是颜色2,下一次染成颜色1 } else if (color[v] == c) { System.out.println(0); // 相邻节点颜色相同,说明不是二图 System.exit(0); // 必须结束程序 } } } } Python版: n = int(input()) w = [list(map(int, input().split())) for _ in range(n)] color = [0] * n # color 记录染色信息,初始值为0 def dfs(u, c): color[u] = c for v in range(n): if w[u][v] == 0: continue if color[v] == 0: dfs(v, 3 - c) elif color[v] == c: print(0) exit() dfs(0, 1) ans = 1 for c in color: if c == 0: ans *= 2 print(ans) 做法二:矩阵树定理 矩阵树定理可以用于计算无向图的生成树个数以及最小割的计算。这里只介绍如何使用矩阵树定理计算无向图的染色数。 定义行列式的值为图的邻接矩阵去掉一行一列之后的行列式的值,即 d = |(W)ij|,其中 W 表示邻接矩阵。则生成树个数等于 d^(n-2)。 如果将邻接矩阵 W 的每一行都减去该行的最后一个元素,并将对角线顶点连接起来,形成的新矩阵可以用于计算染色数。新矩阵记作 M,其中 M 的 i 行表示第 i 个结点都和哪些结点相连,例如 M 的第 i 行为 [0, 1, 1, 1],表示 1、2、3 这三个结点和 i 相连。 将 M 的第 i 行中的每个元素变成该行所有数的相反数,再将对角线顶点连接起来,形成的新矩阵记作 K,那么 K 的行列式值即为答案。例如,如果 M 的第 i 行为 [0, 1, 1, 1],那么 K 矩阵的该行为 [-3, 1, 1, 1]。 代码如下: Java版: import java.util.*; public class Main { static int n; static int[][] w; static int[][] m; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); w = new int[n][n]; m = new int[n - 1][n - 1]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { w[i][j] = sc.nextInt(); if (i != j && w[i][j] != 0) { m[Math.min(i, j)][Math.max(i, j)] = -1; } } } for (int i = 0; i < n - 1; i++) m[i][i] -= Arrays.stream(m[i]).sum(); System.out.println(det()); } static long det() { long ans = 1; for (int i = 0; i < n - 2; i++) { for (int j = i + 1; j < n - 1; j++) { while (m[j][i] != 0) { long t = m[i][i] / m[j][i]; for (int k = i; k < n - 1; k++) m[i][k] -= t * m[j][k]; for (int k = i; k < n - 1; k++) m[i][k] ^= m[j][k] ^= m[i][k] ^= m[j][k]; ans = -ans; } } ans *= m[i][i]; } return ans; } } Python版: n = int(input()) w = [list(map(int, input().split())) for _ in range(n)] m = [[0] * (n - 1) for _ in range(n - 1)] for i in range(n): for j in range(i + 1, n): if w[i][j] == 1: m[min(i, j)][max(i, j) - 1] = -1 for i in range(n - 1): m[i][i] = sum(m[i]) - m[i][i] def det(): ans = 1 for i in range(n - 2): for j in range(i + 1, n - 1): while m[j][i]: t = m[i][i] // m[j][i] for k in range(i, n - 1): m[i][k] -= t * m[j][k] m[i], m[j] = m[j], m[i] ans = -ans ans *= m[i][i] return ans print(det())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值