探索因子效度:结构方程模型AMOS应用
背景简介
本文依据《结构方程模型与AMOS应用第二版》第四章内容,深入探讨了在社会科学和行为科学研究中,如何使用AMOS软件对一阶验证性因素分析(CFA)进行因子效度的检验。
因子效度检验的重要性
因子效度是指一个测量工具是否准确测量了它所要测量的潜在概念或构造。在使用AMOS进行CFA时,因子效度的检验是至关重要的,它能帮助研究者验证测量模型的结构是否与实际观察到的数据相符合。
AMOS输出解读
在章节中,作者详细说明了如何解读AMOS的输出结果,特别是模型修改指标(M.I.)和参数变化(Par change)。通过审视这些指标,研究者可以识别模型中误差协方差和回归权重的潜在问题。
表4.3:选定的AMOS模型2输出:修改指标
作者列出了AMOS在模型2中产生的修改指标,包括误差协方差和回归权重的参数变化。例如, err7 ↔ err4
和 err21 ↔ err7
的修改指标较大,表明这两个误差协方差的模型拟合可能不佳。然而,作者通过审视相关项目内容,认为加入这些参数的实质性理由很弱。
模型修改与重新指定
在模型3中,作者考虑了项目12在因素1(情感耗竭)上的交叉负荷,这一决定基于对项目内容的深入分析,以及考虑到文献中类似的交叉负荷现象已被注意到。通过使用AMOS中的Path图标将项目12与因素1连接,重新指定了模型4。
模型4的最终评价
在模型4中,与模型3相比,卡方值有统计显著的下降,RMSEA和CFI指标也显示出显著的改善。这表明模型4是最终最佳拟合且最简约的模型。
表4.4和表4.5:选定的AMOS输出
作者进一步展示了模型4的输出结果,包括未标准化和标准化的因素载荷、因子协方差以及误差协方差。所有未标准化估计值都是统计显著的,这表明模型中所有的参数估计都是有意义的。
总结与启发
通过对AMOS软件输出的细致解读和模型的逐步修改,本章节展示了如何通过实证分析提升模型的因子效度。研究者在使用结构方程模型进行数据分析时,应注重模型的理论基础,并结合统计指标和实际测量项目的内容来优化模型。
启发
- 理解和应用模型修改指标对提升模型拟合度至关重要。
- 结合理论和实际数据对模型进行持续的审视和修改,是提升因子效度的有效途径。
- 在模型优化过程中,应考虑模型的简约性,避免过度拟合现象的发生。
本文所探讨的内容为使用AMOS进行结构方程模型分析的研究者提供了宝贵的实践指南,不仅有助于提升因子效度,而且增强了模型的理论解释力。