迁移学习在活动识别与城市计算中的应用

迁移学习在活动识别与城市计算中的应用

背景简介

在数据驱动的决策中,数据的丰富性是至关重要的。然而,在现实世界的活动中,尤其是城市计算领域,我们经常面临标签数据稀疏性的问题。为了解决这一问题,迁移学习作为一种强大的机器学习工具,可以跨越不同的特征空间、概率分布和标签空间,从源域传输知识到目标域。

迁移学习在活动识别中的应用

源域和目标域的区别

在活动识别中,源域和目标域可以具有不同的特征空间、概率分布和标签空间。例如,智能手机传感器读数可以用来帮助识别智能手表上的活动。不同人之间也可以通过传感器读数进行活动识别。此外,不同活动标签之间的转换也是迁移学习可以解决的问题。

迁移学习方法

近年来,研究者们提出了多种迁移学习方法来应对不同的迁移学习场景。例如,Khan等人(2018年)提出了一种基于CNN的归纳迁移学习模型,通过最小化源域和目标域之间的Kullback–Leibler散度来实现特征空间之间的迁移。Deng等人(2014年)提出了跨人活动识别方法和在线学习算法,以适应不同人的活动识别模型。Wang等人(2018b年)提出了一个分层迁移学习框架,用于不同标签空间之间的迁移。

问题设定与目标

迁移学习的目标是估计目标域中的活动标签概率。通过建立源域和目标域之间的概率模型,我们可以将源域的知识应用到目标域的活动识别中。这包括在不同特征空间和不同标签空间之间进行知识迁移。

迁移学习在城市计算中的应用

跨模态、跨区域和跨应用的迁移

在城市计算中,数据的异质性和分布不均匀性是常见现象。迁移学习可以通过跨模态、跨区域或跨应用的迁移来辅助解决数据稀缺问题。例如,空气质量预测可以通过整合城市道路地图、车辆GPS轨迹等多种数据模态来提高准确性。

实际应用案例

文章以空气质量预测和设施部署为例,展示了迁移学习技术如何在城市计算中被应用。通过迁移学习,我们可以将一个地区或应用中的知识应用到数据稀缺的新场景中,从而提高预测的准确性或优化设施部署的决策。

总结与启发

迁移学习为解决数据稀疏性问题提供了新的视角和工具。在活动识别和城市计算中,通过跨特征空间、跨概率分布和跨标签空间的知识迁移,我们可以充分利用已有数据,克服数据不足的限制。这种技术不仅能够提高模型的泛化能力,还能在实际应用中实现知识的有效利用,具有重要的现实意义和应用价值。

在未来的研究中,探索更多高效且具有适应性的迁移学习方法将是关键。同时,如何评估源域和目标域之间的相似性,以及如何选择适当的迁移学习策略,也是值得深入研究的问题。随着计算能力的提升和数据量的增加,迁移学习将在数据科学和人工智能领域发挥更加重要的作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值