1.线性代数知识
矩阵乘法是两个矩阵中的一行一列向量内积构成了其中一个元素
正定矩阵,一个矩阵乘以任意一个行向量和列向量都是大于零的
正交矩阵
置换矩阵
矩阵范数
Frobenius范数:
2.深拷贝是创建一个新的对象,浅拷贝把id地址也拷贝
B=A.clone()是深拷贝,B=A是浅拷贝
3.torch中的列表,torch.arange()
求和
4.A.sum(axis=0),A.sum(axis=1),axis=0把最外层的括号取消掉,对应位置加和,axis=1,把第二层括号取消掉,对应位置加和,A.sum(axis=[0, 1]),内置元素,keepdims=True保持原来的矩阵维度
乘积
5.A*B,两个矩阵的按元素乘法,哈达玛积
6. torch.dot(x, y)两个向量的点积,为所有位置对应乘积的和
7.矩阵乘以向量torch.mv()
8.矩阵乘以矩阵torch.mm()
累积和
9.A.cumsum(axis=1) ,cumsum函数用于计算输入张量沿着指定轴的累积和。返回维度与原来一直,在axis方向上,某个位置的值为该位置与之前位置的和的叠加
范数
10.矩阵的L2范数torch.norm(),所有元素平方和的开方,L1范数torch.abs().sum()