2.3 线性代数

1.线性代数知识

矩阵乘法是两个矩阵中的一行一列向量内积构成了其中一个元素

正定矩阵,一个矩阵乘以任意一个行向量和列向量都是大于零的

正交矩阵

置换矩阵

矩阵范数

Frobenius范数:

2.深拷贝是创建一个新的对象,浅拷贝把id地址也拷贝

B=A.clone()是深拷贝,B=A是浅拷贝

3.torch中的列表,torch.arange()

求和

4.A.sum(axis=0),A.sum(axis=1),axis=0把最外层的括号取消掉,对应位置加和,axis=1,把第二层括号取消掉,对应位置加和,A.sum(axis=[0, 1]),内置元素,keepdims=True保持原来的矩阵维度

乘积

5.A*B,两个矩阵的按元素乘法,哈达玛积

6. torch.dot(x, y)两个向量的点积,为所有位置对应乘积的和

7.矩阵乘以向量torch.mv()

8.矩阵乘以矩阵torch.mm()

累积和

9.A.cumsum(axis=1) ,cumsum函数用于计算输入张量沿着指定轴的累积和。返回维度与原来一直,在axis方向上,某个位置的值为该位置与之前位置的和的叠加

范数

10.矩阵的L2范数torch.norm(),所有元素平方和的开方,L1范数torch.abs().sum()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值