组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!(但子集也是组合问题,故普通子集也是很简单的)
下面看子集问题的升级版:
与子集的区别是 集合里面有重复元素,而且求取的子集得去重。
去重方法和组合总和2的套路一样,分树枝去重和树层去重。
更升级:
通过排序,再加一个标记数组来达到去重的目的。
而本题求自增子序列,是不能对原数组经行排序的,排完序的数组都是自增子序列了。所以不能使用之前的去重逻辑!
在图中可以看出,同一父节点下的同层上使用过的元素就不能在使用了
递归函数上面的uset.insert(nums[i])
,下面却没有对应的pop
之类的操作,应该很不习惯吧,哈哈
这也是需要注意的点,unordered_set<int> uset
是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!
class Solution {
public:
vector<vector<int> > res;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex){
if(path.size() >= 2) res.push_back(path);
if(startIndex == nums.size()) return;
unordered_set<int> unset; //只负责本层!!!
for(int i = startIndex; i < nums.size(); i++){
if((path.size() > 0 && nums[i] <path.back()) || unset.find(nums[i]) != unset.end()){
continue;
}
unset.insert(nums[i]);
path.push_back(nums[i]);;
backtracking(nums, i + 1);
path.pop_back();
}
}
vector<vector<int>> findSubsequences(vector<int>& nums) {
vector<bool> used(nums.size(), false);
backtracking(nums, 0);
return res;
}
};