子集问题汇总

组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!(但子集也是组合问题,故普通子集也是很简单的)

下面看子集问题的升级版:
子集的区别是 集合里面有重复元素,而且求取的子集得去重。
去重方法和组合总和2的套路一样,分树枝去重和树层去重。

更升级:

通过排序,再加一个标记数组来达到去重的目的。
而本题求自增子序列,是不能对原数组经行排序的,排完序的数组都是自增子序列了。

所以不能使用之前的去重逻辑!

在这里插入图片描述
在图中可以看出,同一父节点下的同层上使用过的元素就不能在使用了

递归函数上面的uset.insert(nums[i]),下面却没有对应的pop之类的操作,应该很不习惯吧,哈哈

这也是需要注意的点,unordered_set<int> uset是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!

class Solution {
public:
    vector<vector<int> > res;
    vector<int> path;
    
    void backtracking(vector<int>& nums, int startIndex){
        if(path.size() >= 2) res.push_back(path);

        if(startIndex == nums.size()) return;

        unordered_set<int> unset; //只负责本层!!!
        for(int i = startIndex; i < nums.size(); i++){
            if((path.size() > 0 && nums[i] <path.back()) || unset.find(nums[i]) != unset.end()){
                continue;
            }
            
            unset.insert(nums[i]);
            path.push_back(nums[i]);;
            backtracking(nums, i + 1);
            path.pop_back();
            
        }
    }

    vector<vector<int>> findSubsequences(vector<int>& nums) {
        vector<bool> used(nums.size(), false);
        backtracking(nums, 0);

        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值