完全背包问题

有N件物品和一个最多能背重量为W的背包,第i件物品的重量为weight[i],价值为value[i]。每件物品都有无限多个(也就是可以放进背包多次),求解将哪些物品放入背包物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

使用一维数组时得先遍历物品再遍历背包,且背包得从大到小遍历,为了防止物品多次放入。
而完全背包的物品是可以多次添加的,故要从小到大遍历。

//先遍历物品再遍历背包
for(int i = 0; i < weight.size(); i++){
	for(int j = weight[i]; j < weight; j++){
		dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
	}	
}

和0-1背包不一样,使用一维数组时,for先循环哪个也没有影响

//先遍历背包再遍历物品
for(int j = 0; j < weight; j++){
	for(int i = 0; i < weight.size(); j++){}
		if(j >= weight[i])
			dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
		
}

在这里插入图片描述

每一种硬币有无限多个,故是一个完全背包问题。而又和纯完全背包不一样。完全背包dp[weight]的价值总和最大。本题是求凑成总金额的个数(且是组合数!!!)。

求装满背包有多少种方法,一般都是dp[j] += dp[j - nums[i]]
遍历顺序:因为是求组合数,故只能外层for遍历物品,内层for遍历背包。元素之间要求没有顺序。
而纯背包是能凑成总和就行,不管怎么凑的。

for (int i = 0; i < coins.size(); i++) { // 遍历物品
    for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
        dp[j] += dp[j - coins[i]];
    }
}

dp[j]求的事组合数

for (int j = 0; j <= amount; j++) { // 遍历背包容量
    for (int i = 0; i < coins.size(); i++) { // 遍历物品
        if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
    }
}

dp[j]求的是排列数

代码:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1;
        //dp[j]表示amount为j的总金额可以凑的组合数

        for(int i = 0; i < coins.size(); i++){
            for(int j = coins[i]; j <= amount; j++){
                dp[j] += dp[j - coins[i]];
            }
        }

        
        return dp[amount];
    }
};

在这里插入图片描述

与上一题不一样,这题求的是可以凑成总金额的最少硬币数。

dp[i]表示凑满i的最少银币数
递推公式:dp[i]. = min(dp[i], dp[i - coins[i]] + 1);
初始化:因为要求最小值,故dp数组初始化为INT_MAX,这样才能保证不被初始值覆盖。但dp[0] = 0,凑足总金额为0所需钱币的个数一定是0。
遍历顺序:此题既不是组合问题也不是排列问题,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。。

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        
        dp[0] = 0;

        //先遍历物品,再遍历背包
        for(int i = 0; i < coins.size(); i++){
            for(int j = coins[i]; j <= amount; j++){
                if(dp[j - coins[i]] != INT_MAX)
                    dp[j] = min(dp[j], dp[j - coins[i]] + 1);      
                }
        }

        if(dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }

        
        
    
};

总结:
背包递推公式

  1. 问能否装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
  2. 装满背包有多少种方法:dp[j] += dp[j - nums[[i]]
  3. 问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
  4. 问装满背包所用物品的最小个数:dp[j] = min(dp[j], dp[j - nums[i]] + 1)

递归顺序

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值