tf.nn.conv2d和tf.contrib.slim.conv2d的区别

前言

	在查看代码的时候,看到有代码用到卷积层是tf.nn.conv2d,但是也有的使用的卷积层是tf.contrib.slim.conv2d,这两个函数调用的卷积层是否一致,在查看了API的文档,以及slim.conv2d的源码后,做如下总结:

tf.nn.conv2d

	conv2d(

   input,

   filter,

   strides,

   padding,

   use_cudnn_on_gpu=None,

   data_format=None,

   name=None

)
	input指需要做卷积的输入图像,它要求是一个Tensor,具有[batch_size, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求数据类型为float32和float64其中之一
	
	filter用于指定CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维,这里是维度一致,不是数值一致。这里out_channels指定的是卷积核的个数,而in_channels说明卷积核的维度与图像的维度一致,在做卷积的时候,单个卷积核在不同维度上对应的卷积图片,然后将in_channels个通道上的结果相加,加上bias来得到单个卷积核卷积图片的结果。
	strides为卷积时在图像每一维的步长,这是一个一维的向量,长度为4,对应的是在input的4个维度上的步长.	
	padding是string类型的变量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式,SAME代表卷积核可以停留图像边缘,VALID表示不能,更详细的描述可以参考http://blog.csdn.net/mao_xiao_feng/article/details/53444333
	use_cudnn_on_gpu指定是否使用cudnn加速,默认为true
	data_format是用于指定输入的input的格式,默认为NHWC格式
	结果返回一个Tensor,这个输出,就是我们常说的feature map

tf.contrib.slim.conv2d

	convolution(inputs,

     num_outputs,

     kernel_size,

     stride=1,

     padding='SAME',

     data_format=None,

     rate=1,

     activation_fn=nn.relu,

     normalizer_fn=None,

     normalizer_params=None,

     weights_initializer=initializers.xavier_initializer(),

     weights_regularizer=None,

     biases_initializer=init_ops.zeros_initializer(),

     biases_regularizer=None,

     reuse=None,

     variables_collections=None,

     outputs_collections=None,

     trainable=True,

     scope=None):
     
    	 inputs同样是指需要做卷积的输入图像
		num_outputs指定卷积核的个数(就是filter的个数)
		
		kernel_size用于指定卷积核的维度(卷积核的宽度,卷积核的高度)
		
		stride为卷积时在图像每一维的步长
		
		padding为padding的方式选择,VALID或者SAME
		
		data_format是用于指定输入的input的格式
		
		rate这个参数不是太理解,而且tf.nn.conv2d中也没有,对于使用atrous convolution的膨胀率(不是太懂这个atrous convolution)
		
		activation_fn用于激活函数的指定,默认的为ReLU函数
		
		normalizer_fn用于指定正则化函数
		
		normalizer_params用于指定正则化函数的参数
		
		weights_initializer用于指定权重的初始化程序
		
		weights_regularizer为权重可选的正则化程序
		
		biases_initializer用于指定biase的初始化程序
		
		biases_regularizer: biases可选的正则化程序
		
		reuse指定是否共享层或者和变量
		
		variable_collections指定所有变量的集合列表或者字典
		
		outputs_collections指定输出被添加的集合
		
		trainable:卷积层的参数是否可被训练
		
		scope:共享变量所指的variable_scope

小结

	在上述的API中,可以看出去除掉初始化的部分,那么两者并没有什么不同,只是tf.contrib.slim.conv2d提供了更多可以指定的初始化的部分,而对于tf.nn.conv2d而言,其指定filter的方式相比较tf.contrib.slim.conv2d来说,更加的复杂。去除掉少用的初始化部分,其实两者的API可以简化如下:
		tf.contrib.slim.conv2d (inputs,

           num_outputs,[卷积核个数]

           kernel_size,[卷积核的高度,卷积核的宽度]

           stride=1,

           padding='SAME')

	tf.nn.conv2d(
	
	   input,(与上述一致)
	
	   filter,([卷积核的高度,卷积核的宽度,图像通道数,卷积核个数])
	
	   strides,
	
	   padding,
	
	)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值